Installation, Commissioning and Performance of the CMS Electromagnetic Calorimeter (ECAL) Electronics

How to compose a very very large jigsaw-puzzle

Sept. 17th, 2008

Nicolo Cartiglia, INFN, Turin, Italy
The CMS electromagnetic calorimeter

- 36 Supermodules, 1700 Crystal each
- 4 Endcap Dees, 3662 Crystals each
- 8 meters long
- 90 Tons of Crystal

In total, more than 75,000 channels
Before being sent to the CMS cavern, ECAL HW has been assembled and tested in many laboratories with final construction in several CERN sites.

CERN integration center:
4 SMs in preparation

- Modules are produced in Rome and CERN
- SM are assembled at CERN
- On-detector electronics is installed and tested at CERN Prevescin.
Detector Installation

After many years of work ECAL is inside CMS

April 2007:
first SM

July 2007:
Barrel Done

July 2008: Endcap Done

Sept. 17th, 2008
Nicolo Cartiglia, INFN, Turin, Italy
Ancillary Systems

The very first step is the final commissioning of the ancillary sub-systems (which happened concurrently with the installation):

- CMS & ECAL Safety System (poster pres.)
- Cooling
- Nitrogen flow
- Detector Control System (poster pres.)

These sub-systems have been running now for ~ year and they are very reliable. We are still suffering occasionally from ‘infrastructure’ problems such as the lack of cold water, power cuts, evacuation alarms which provide us with a few hours of rest….
The commissioning of the electronics has two main aspects

- **Hardware**
 - On- & off-detector
 - High and Low voltage system
 - Laser monitoring system
 - Fiber optic links

- **DAQ:** Necessary software to run the system
On-Detector Electronics

MGPA: Multi-Gain-Pre-Amplifier with 3 gains (1, 6 and 12)
ADC: 4 40-MHz
12 bit digitize the 3 outputs
The highest, non-saturated gain is selected and kept in memory waiting for a L1-trigger signal (3.6 μs latency)

Sent off detector via laser fibers
Data information sent every L1
Trigger information sent every bunch crossing

Signal from the photodetector
40 MHz sampling

Overall the on-detector electronics is made by ~ 21,000 custom made boards, 2.3 W/ch => 180kW total

Sept. 17th, 2008
Nicolo Cartiglia, INFN, Turin, Italy
Off-Detector Electronics

CCS: reception/distribution of LHC clock and control signals + front-end initialization

TCC: encoding of trigger primitives and transmission to Regional Calorimeter Trigger at 40 MHz + classification of trigger tower importance and transmission to SRP at Level 1 rate

DCC: integrity check + data reduction + transmission to central DAQ at Level 1 rate

SRP: send to the DCC the list of trigger towers to be read out

Overall the off-detector electronics is made by 18 VME-9U and 1 VME-6U crates controlled by 28 crate mounted PCs
The HV system provides the necessary voltages to the photo-detectors (APD in the barrel and VPT in the Endcap)

• **Barrel**: 18 CAEN crates, each equipped with 4 HV modules. A total of 1224 independent channels providing 350-400 Volt to groups of 50 crystals are installed.
• **EndCap**: 2 CAEN crates provide 8 independent channels supplying 800-1000V for the anodes, and 600-800V for the dynodes to groups of ~1800 photodetectors. All VPTs in a quadrant have the same bias voltages.

The LV system supplies the voltages to the front-end.
The system is produced by Wiener and it comprised a total of ~680 LV channels in the Barrel and ~150 for the Endcaps.
A laser system is used to check transparency changes in crystals:

- Changes is dose-rate dependent,
- 1 or 2 per cent at low luminosity
- Oscillation due to LHC cycle O(10%) at $\eta=2.5$, nominal luminosity

Two wavelengths:
- $\lambda=440$ nm, to follow the changes in transparency due to radiation
- $\lambda=796$ nm to verify the stability of other elements

Sept. 17th, 2008 Nicolo Cartiglia, INFN, Turin, Italy
Fiber optic links

Data transmission between the on- and off-detector electronics uses optical fibers:

• Data: 1 link / trigger tower
• Trigger:
 - barrel: 1 link / trigger tower;
 - endcap: 5 links / trigger tower
• Total capacity ~640Mb/s

Total data + trigger: ~9000 links
DAQ commissioning deals with all necessary aspects to run the whole ECAL system:

• Trigger
• Selective readout Protocol
• Laser
• Detector Control Units
• Condition and Configuration Databases
• Non-event monitoring
• Run Control
• DQM
Comparison of trigger decision with off-line emulator

Study of trigger rate as a function of threshold

Good SMs: very quite above 1.75 GeV

SMs with problems (for that run): trigger rate independent of threshold

Sept. 17th, 2008
Selective Readout Protocol (SRP)

The SRP receives from the TCC the list of ‘interesting towers’ and builds around each of them a 3x3 TT matrix which is read-out in full (each TT = 25 crystals)

This is the map of the TTs read out in a single event: most of them have only one crystal while the 3x3 groups have all 25 crystals

$25 \times 9 \text{ TT} = 225 \text{ Crystals}$
The laser calibration works routinely in local runs while in global runs we still have to finalize the sequence

- 600 laser shots for one transparency measurement
- whole ECAL in ~ 1/2 hour
- 40 Gb of laser data a day

During each LHC orbit (96 μs) there is a short period (~1 %) with no bunches (abort gap). ECAL uses this gap to fire the laser and take calibration events while running.
ECAL status

ECAL runs routinely with CMS and almost all ECAL sub-systems are operational:

Noise level and performance as expected

Number of masked (i.e. not used) channels ~ few per mille.

- Of those, a small fraction has been declared dead (link/clock no working)
- The remaining masked channels have a variety of problems. We hope to recover a large part of them (it will require time)

Sept. 17th, 2008

Nicolo Cartiglia, INFN, Turin, Italy
Local and global runs

Global Run:
- Coherent exercise of CMS data taking in preparation for collisions
- 1 week of intense activity
- 6 GR in 2007, 8 in 2008
- Involves more and more subsystems
- ~100 ml cosmic triggers acquired

Local Runs:
- Use to debug the system, test configuration
- ECAL only + additional Trigger chain
- Readout can be local (VME with low rate) or global

Beam Run:
- Since September 10th LHC has beam!
- The run structure has deeply changed with a lot of attention given to beam related problems
- Sub-system time for development restricted
Global Cosmic runs

During global cosmic runs a very large number of cosmic ray signals have been acquired

ECAL is able to:

• Clearly see the signal deposited by a mip, 250 MeV (with photodector gain raised from 50 ⇒ 200)
• Trigger on mip signal both using single tower or coincidence

Note: we are using ECAL to measure very low energy deposition, far from its optimization ⇒ this was very useful

Measuring signal so small made us understand ECAL very well

Sept. 17th, 2008 Nicolo Cartiglia, INFN, Turin, Italy
Cosmic runs - Signal

The signal in cosmic ray runs varies a lot since they come with every angle. There is also a high energy component due to muon bremsstrahlung.

Sept. 17th, 2008 Nicolo Cartiglia, INFN, Turin, Italy
Using cosmic signals we had timed-in all ECAL-barrel crystals

Top earlier

Bottom later
CMS is now working as a single detector, with correlation between sub-detector.

In this picture:

• DT, Muon Drift Tube
• RPC, Muon
• ECAL Barrel
• ECAL Endcaps
• HCAL, Hadronic Calo.

Sept. 17th, 2008

Nicolo Cartiglia, INFN, Turin, Italy
Global runs – Event Display

Calorimeter tracking.....
Beam runs!

Starting September 10th LHC has beam!
LHC dumped single shot beam (~ 10^9 proton) on the collimators 150 m away from CMS:

Total energy in excess of ~ 100 TeV

98% of crystals hit

~ 1-300,000 muons in one hit

Incredible opportunity to time-in the whole ECAL with just few events
Conclusion and outlook

A very personal ECAL timeline:

Concept Construction Commissioning
-10 -5 -2 0

b.c. b.c. = before collisions

a.c. a.c. = after collision

You are here

Every time we go from b.c. ➔ a.c. there is a dramatic change:
I think we are ready

Sept. 17th, 2008 Nicolo Cartiglia, INFN, Turin, Italy
CMS rapidity coverage