The ATLAS Radiation Dose Measurement System and its Extension to SLHC Experiments

<u>Jochen Hartert</u>¹, Johanna Bronner¹, Vladimir Cindro², Andrej Gorišek², Gregor Kramberger², Igor Mandić², Marko Mikuž²

Physikalisches Institut, Universität Freiburg
Jožef Stefan Institute, Ljubljana

TWEPP 2008, Naxos, Greece

The ATLAS Experiment

Proton-proton collisisions at $\sqrt{s}=14\,\mathrm{TeV}$ and $\mathcal{L}=10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Radiation Field in ATLAS

- Exposure of electronics to:
 - radiation from pp-collisions (mainly pions)
 - neutrons from interactions of hadrons with detector material
- After 10 years of LHC operation electronics irradiated up to:
 - Total Ionizing Dose: TID > 100 kGy
 - Non Ionizing Energy Loss $\Phi_{eq} > 10^{15} \ 1 \, \mathrm{MeVn/cm^{-2}}$
- Monitoring of radiation levels needed in order to:
 - cross check simulations
 - understand change in detector performance
 - and as independent measurement

Non Ionising Energy Loss in the ATLAS Inner Detector

FLUKA simulation by Ian Dawson

3 / 16

Radiation Field at SLHC

- Luminosity: $\mathcal{L}(\mathsf{SLHC}) \approx 10 \times \mathcal{L}(\mathsf{LHC})$
- Ionizing dose scales with luminosity: $TID(SLHC) \approx 10 \times TID(LHC)$
- Upgrade of ATLAS tracker to full silicon
 - \rightarrow loss of moderating effect of the Transition Radiation Tracker
 - → NIEL not expected to scale with luminosity
 - \rightarrow as compensation introduce a 5 cm thick moderator

Non Ionising Energy Loss at the SLHC

Ian Dawson

Total Ionizing Dose (TID) Measurement - RadFETs

- RadFET: Radiation Field Effect Transistor
- Electrons escape, holes are trapped in SiO₂-Si boundary.
- Higher negative gate voltage needed to open transitor.
- Measure gate voltage increase at given drain current. $\Delta V = a \times (TID)^b$
- Sensitivity depends on oxide thickness
- Three RadFETs used in ATLAS to cover large range of doses:
 - 0.001 Gy to 10 Gy: 1.6 μ m from CNRS LAAS, Toulouse, France
 - up to 10^4 Gy: $0.25 \,\mu\mathrm{m}$ from REM, Oxford, UK
 - \bullet up to 10^5 Gy: $0.13\,\mu\mathrm{m}$ from REM, Oxord, UK

Non Ionising Energy Loss (NIEL) Measurement (1)

First Method: Bulk damage in silicon

 \rightarrow Increase of voltage at given current in forward biased pin diodes is proportional to the $1\,\text{MeV}$ neutron equivalent fluence:

$$\Phi_{eq} = k \times (V - V_0)$$

- 108 to 1012 n/cm2: CMRP from University of Wollongong, Australia
- $ealso 10^{12} ext{ to } 10^{15} ext{ n/cm}^2$: OSRAM BPW34 Silicon PIN photodiode

Non Ionising Energy Loss (NIEL) Measurement (2)

Second Method: Bulk damage in silicon

 \rightarrow Increase of leakage current (I_{leakage}) in reverse biased diode:

$$\Phi_{eq} = I_{\text{leakage}}/(\alpha V)$$
 (V: Volume)

- 10^{11} to 10^{15} n/cm² higher fluences with higher voltage
 - Pad diode with guard ring structure on epitaxial silicon
 - 25 μm thin \rightarrow fully depleted at voltages < 30 V also after irradiation

Thermal Neutron Fluence Measurements

- DMILL transistors are used in readout electronics in parts of the Inner Detector (SCT).
- Base current at fixed collector current sensitive to fast and thermal neutrons:

$$\frac{\Delta I_b}{I_c} = k_{eq} \Phi_{eq} + k_{th} \Phi_{th}$$

- k_{eq} and k_{th} known Φ_{eq} measured with diodes
 - \rightarrow determine Φ_{th}

Radiation Monitoring Sensor Boards

- Inner Detector: 14 Modules that contain:
 - 3 RadFETs for different dose ranges
 - 2 PIN diodes for low and high fluences
 - 1 Epitaxial (large fluence range)
 - 2 DMILL bipolar transistors
 - NTC temperature sensor
 - resistive pad for heating on the back side

- Outside the Inner Detector region: 48 modules
 - 1 high sensitivity PIN diode (CMRP)
 - 1 RadFET
 - NTC temperature sensor

Readout

- Usage of standard ATLAS components for straight forward integration:
 - ELMB: 64 adc channels, CAN bus communication
 - ELMB-DAC: current source, 16 channels
- Sensors are only biased during readout
- PVSS based detector control system (DCS)
- Integration in ATLAS DCS and data base archiving

PVSS Online Monitoring

Tests in Mixed Radiation Environment at CERN PS

- Mixed high energy particles in IRRAD6 environment at CERN PS.
- Two modules (Inner Detector style) are irradiated since mid May.
- Test of readout setup/procedure and calibration constants.

F. Ravotti, M. Glaser et. al

RadFETs in Mixed Radiation Environment

High sensitivity RadFET (LAAS $1.6 \mu m$)

Medium sensitivity RadFET (REM $0.25 \mu m$)

- Secondary Emission Counter (SEC) counts number of protons
 - conversion factors to TID and NIEL from previous measurements
 - not useful for very small doses (unstable beam conditions)
- ullet reduced response of LAAS in proton rich environment ightarrow recalibration

PIN diodes in Mixed Radiation Environment

- \bullet CMRP PIN diode also sensitive to low fluences (10 9 1 MeV neq/cm 2).
- Good agreement between PIN diodes (20 % uncertainty).
- \bullet CMRP "saturated" at $2 \times 10^{12} \ 1 \, \text{MeV neq/cm}^2$

DMILL Transistors in Mixed Radiation Environment

thermal neutron fluence

- Directly measure degradation of DMILL transistor performance.
- Determine neutron fluence (using Φ_{eq} from PIN diode as input).

Summary

- Radiation monitoring important especially at the start of operation
 - to cross check simulations
 - determine the correlation between dose levels and luminosity (SLHC)
 - monitor electronics performance changes particularly in the inner detector
- The system in ATLAS allows online monitoring of radiation levels:
 - TID in SiO₂ from cGy up to 100 kGy
 - \bullet NIEL in Si from $10^8\,\mathrm{neq/cm^{-2}}$ up to $10^{15}\,\mathrm{neq/cm^{-2}}$
 - thermal neutron fluence and degradation of DMILL bipolar transistors
- Integration in ATLAS Detector Control System
- Test and optimization in mixed radiation field at low dose rates

