

Monolithic Active Pixel Sensor for a "Tera-Pixel" ECAL at the ILC

J.P. Crooks

Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson

University of Birmingham

J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy

Imperial College London

J.P. Crooks, B. Levin, M.Lynch, M. Stanitzki, K.D. Stefanov, R. Turchetta, M. Tyndel, E.G. Villani

STFC-Rutherford Appleton Laboratory

Introduction

SiW ECAL for ILC

- · 30 layers silicon & tungsten
- Prove Monolithic Active Pixel Sensor (MAPS) as a viable solution for the silicon!

Machine operation

- · 2ms "bunch train" of events
- 198ms between bunch trains for readout

Sensor Specification

- Sensitive to MIP signal
- · Small pixels determine "hit" status (binary readout)
- Store timestamp & location of "hits"
- Target noise rate 10⁻⁶
- Design to hold data for 8k bunch crossings before readout
- · Minimum "dead space"

INMAPS Process

Standard 0.18 micron CMOS
 Used in our sensor

- 6 metal layers
- Analog & Digital @ 1.8v & 3.3v
- 12 micron epitaxial layer
- · Additional module: **Deep P-Well**
 - Developed specifically for this project
 - Added beneath all active circuits in the pixel
 - Should reflect charge, preventing unwanted loss in charge collection efficiency
- Device simulations show conservation of charge
- Test chip processing variants
 - Sample parts were manufactured with/without deep p-well for comparison

Pixel Architectures

preShape

- · Gain 94uV/e
- · Noise 23e-
- Power 8.9uW
- 150ns "hit" pulse wired to row logic
- Shaped pulses return to baseline

preSample

- · Gain 440uV/e
- Noise 22e-
- · Power 9.7uW
- 150ns "hit" pulse wired to row logic
- Per-pixel selfreset logic

Pixel Layouts

preSample Pixel

- 4 diodes
- · 189 transistors
- · 34 unit capacitors
- Configuration SRAM
 - Mask
 - Comparator trim (4 bits)
- 2 variants: subtle changes to capacitors

preShape Pixel

- 4 diodes
- 160 transistors
- · 27 unit capacitors
- 1 resistor (4Mohm)
- Configuration SRAM
 - Mask
 - Comparator trim (4 bits)
- · 2 variants: subtle changes to capacitors

Device Simulations

TCAD model of pixel substrate

- Response of each diode recorded for a simulated point charge deposit at different locations
 - · Charge collected
 - Collection time

Profile F; through cell

Profile B; through cell

Test Chip Architecture

- 8.2 million transistors
- 28224 pixels; 50 microns; 4 variants
- Sensitive area 79.4mm2
 - of which 11.1% "dead" (logic)
- Four columns of logic + SRAM
 - Logic columns serve 42 pixels
 - Record hit locations & timestamps
 - Local SRAM
- · Data readout
 - Slow (<5Mhz)
 - Current sense amplifiers
 - Column multiplex
 - 30 bit parallel data output

Sensor Testing: Overview

Test pixels

- preSample pixel variant
- Analog output nodes
- Fe55 stimulus
- IR laser stimulus

Single pixel in array

- Per pixel masks
- Fe55 stimulus
- Laser Stimulus

Full pixel array

- preShape (quad0/1)
- Pedestals & trim adjustment
- Gain uniformity
- Crosstalk
- Beam test

Test pixels: Laser Stimulus

- · 1064nm pulsed laser
- 2x2um square area of illumination at focal point
 - · Simulates point-charge deposit in pixel
- Illuminate back of sensor
- Silicon is \sim transparent at this λ
- Adjust focus to hit the EPI layer
 - Account for refractive index!
- Scan XY position to 1um accuracy
- Test pixels & laser run asynchronously
- Oscilloscope triggered by laser sync pulse shows analog response from test pixel
- Measure (histogram)
 - · Amplitude
 - · Time delay
 - = (System Delay) + (charge collection)

Test pixels: Laser Stimulus

- Optimised Focus
- · 2x2um spot, 2um steps
- Profile through 2 diodes in test pixel

- Automated laser profile of full test pixel area begins...
 - With/without DPW
 - · Different depths epi

Test pixels: Laser Stimulus

Evaluating single pixel performance

- Binary readout from pixels in the array
 - · Can mask individual pixels
- Evaluated with a threshold scan...

Single active pixel with/without laser firing

- Record #hits for a given threshold setting
- 1 threshold unit ~0.4mV
- Low thresholds → noise hits
- Max #hits defined by memory limit (=19 per row)
- Comparator is edge-triggered
 - Very small or negative thresholds don't trigger comparator
- Signal should generate hits at higher thresholds than the noise
- No hits expected for very high thresholds

Single Pixel in Array: Laser/Alignment

- · Use laser for alignment
 - · Back of sensor has no features for orientation
 - Mounting is not necessarily square to <1 um
 - · Laser position scans in X & Y
 - · Threshold scan technique
 - · Estimate signal magnitude from drop-off

Single Pixel in Array: Laser Stimulus

- Amplitude results
 - With/without deep pwell
 - Compare
 - Simulations "GDS"
 - Measurements "Real"

Profile F; through cell

Profile B; through cell

Single Pixel in Array: 55Fe Source

- ⁵⁵Fe gives <mark>5.9keV</mark> photon
 - Deposits all energy in "point" in silicon; 1640e
 - Sometimes will deposit maximum energy in a single diode and no charge will diffuse
 → absolute calibration!
- Binary readout from pixel array
 - Need to differentiate distribution to get signal peak in threshold units (TU)
 - Differential approximation

Array of PreShape Pixels: Pedestals

- · Threshold scan of individual pixels
 - Low resolution (for speed)
- Note differing threshold scans of noise

Array of PreShape Pixels: Pedestals

- Plot the distribution of pedestals
 - · Mean
 - · Calculate necessary trim adjustment
 - · Per-pixel trim file
 - · uni-directional adjustment
 - Re-scan pixels individually with trims
- Re-plot the distribution of pedestals

Array of PreShape Pixels: Gains

- Use laser to inject fixed-intensity signal into many pixels
- Relative position should be equivalent for each pixel scanned
- · Adjust/trim for known pixel pedestals

- Gain uniform to 12%
- Quad1 ~40% more gain than Quad0
- Quad1 ~20% better S/N than Quad0

Immediate Future

- · Characterisation of v1.0 is still ongoing
 - Automated laser tests
 - Cosmics stack
- Version 1.1 due back late September
 - One pixel variant selected (preShape quad1)
 - Upgrade trim adjustment from 4bits to 6bits
 - Compatible format: size, pins, pcb, daq etc.
 - Minor bugs fixed
 - Additional test pixels & devices
- Version 1.1 Full Characterisation
 - · (...as for v1.0)
 - Beam test early 2009

Conclusions

- First Sensor
 - Successful operation of highly complex pixels
 - See 55Fe radioactive source
 - See laser injection of charge
 - See beam particles (albeit with low efficiency at the time)
 - Proved viability of the Deep P-Well for applying MAPS to particle physics
 - Selected a preferred pixel design to take forward
- Revised Sensor
 - Uniform array of improved pixels
 - Full characterisation ready to go!
- Long Term
 - Larger format sensors to prove Digital ECAL in a stack!