

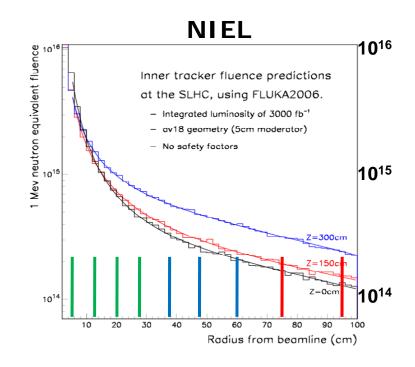
Content:

- Detector layout
- > Readout
- Detector Control
- Power
- Services
- Schedule
- On-going developments

- On-going work in the collaboration, still far from being finalised
- This presentation will mainly discuss the strips detector
- A lot of what is presented here is very likely to be inaccurate or even wrong
- Good opportunity to share some problems and worries

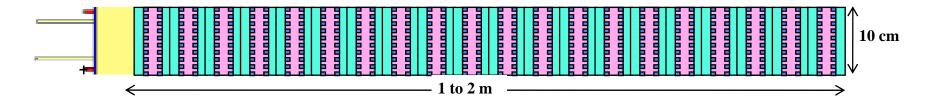
Straw man Layout

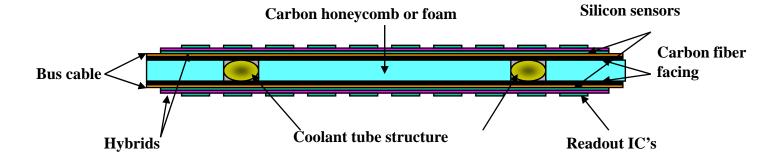
All silicon detector to replace the current pixel, SCT and TRT:


- pixels,
- short strips (2.5cm)
- long strips (10cm)

Environmental parameters

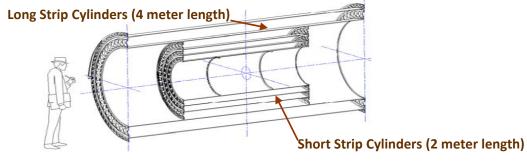
Radiation for 3000 fb-1


TID


Radius in cm	Dose in kGy		
5.05	15800		
12.25	2540		
29.9	760		
51.4	450		
43.9	300		
108	70		

- Running up to 3000 fb⁻¹
 - Design for 6000 fb⁻¹
 - Should take about 6 years (?) → hadron rate for SEE
- Detector temperature ~-30°C
- Magnetic Field ~2T

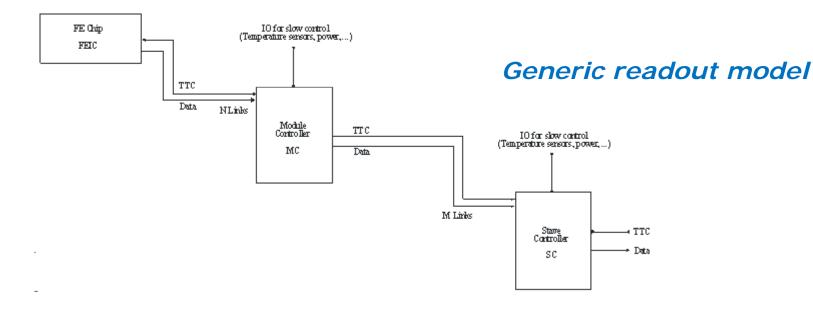
Stave concept



- Modules on fully integrated staves
 - Double sided
 - 1 to 2-m long
- LS modules → 10 x 10 cm²; 1280 strips (10-cm long, 80 µm pitch)
- SS modules \rightarrow 10 x 10 cm²; 5120 strips (2.5-cm long, 80 µm pitch)

Strips Detector in numbers

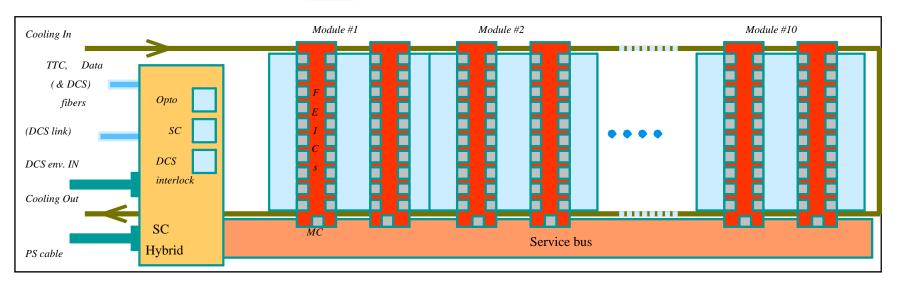
	Layer	Туре	Radius [cm]	Phi segmentation	Number of modules per half single sided stave	Number of 128-ch FEIC per half single sided stave	
	0 Short Strips		38	28	10	400	
Damel	1	Short Strips	49	36	10	400	
Barrel	2	Short Strips	60	44	10	400	
	3	Long Strips	75	56	19	190	
	4	Long Strips	95	72	19	190	
		236					
	Total number of modules for the Barrel						
		Total n		270,080			
Total number of staves for one End-cap						1,152	
Endcap		Total number	57,088				
Total number of 128-channel FEICs					327,168		
Total amount of channels					41,877,504		


- Current SCT detector
 - 4088 modules
 - 49k 128-channel FEIC
 - 6.3M channels

Working Assumptions

- Binary readout as in the current detector
 - 1 hit = 1 bit
- Read-out architecture as identical as possible for the strips and the pixels
 - Avoid extra design diversity
 - Share as much as possible design efforts and costs
 - From the front-end electronics up the off-detector electronics
- Material budget is a key element for the upgraded tracker
 - Solutions minimising the amount of material always preferred

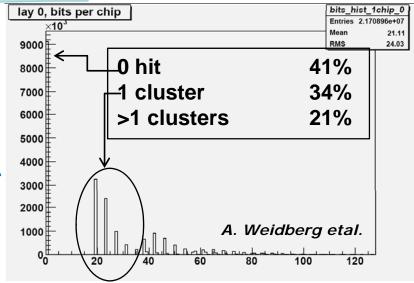
- Extremely harsh radiation environment for the front-end electronics
 - High level of single event upsets expected.
 - Read-out architecture as simple as possible; complex tasks such as partial event building, data integrity check, etc. to be avoided
- Amount of services connected to the tracker to be kept as low as possible
 - To maintain an overall low material budget
 - Available volume for services routing severely limited


Readout Organisation

- In the current detector the readout unit is the module
 - Large number of low speed readout links
 - Large number of power supply lines
- Not affordable for the upgrade

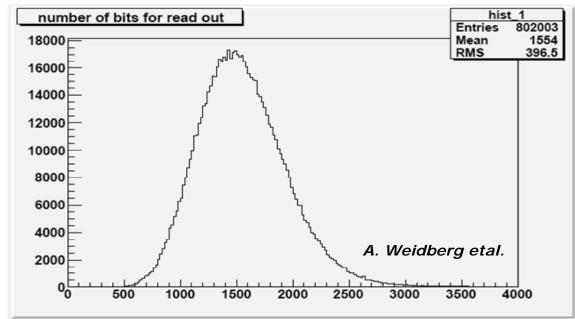
- Hierarchical readout scheme
 - FEIC
 - Module controller
 - Stave controller (GBT)
 - Low number of high speed links

Readout Organisation (Barrel Strips)

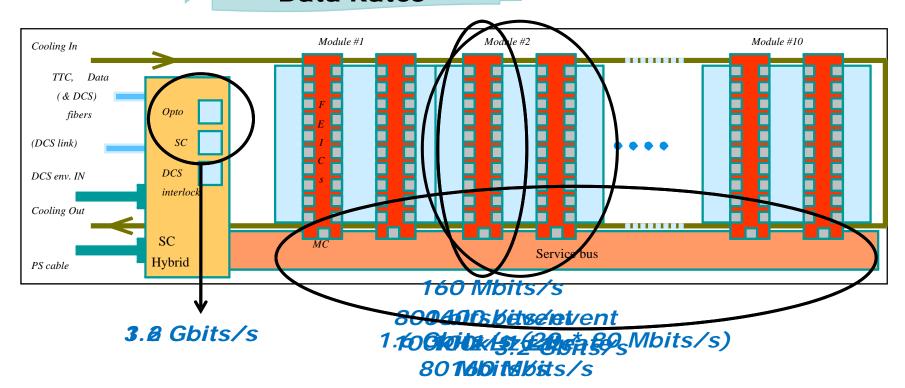

Short Strip Single Sided Half Stave

- Half single sided stave as a readout unit
- Readout hybrids as sub-elements
 - 2 hybrids with 20 FEICs per module for SS
 - 1 hybrid with 10 FEICs per module for LS

Quantity of Data


Simulation for worst case scenario: 10³⁵ cm⁻² luminosity 50 ns BC period (400 overlapping events per BC) Short Strips

Number of hits per FEIC


Event size for a short strips module (40 128channel FEICs). Current ATLAS SCT detector coding scheme

Mean size ~ 1600 bits

Detector

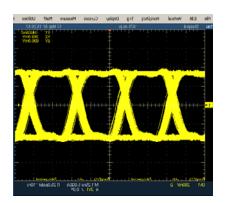
Data Rates

- Long strips and short strips are well balanced
 - 400 versus 380 FEIC
- Numbers without so much safety margin
 - Detector layout very likely to change

- L1A rate could increase
- Luminosity could increase
- Data format might change
- Pixel will require more bandwidth
- Better design for more \rightarrow x2

- FEICs to MC
 - Electrical, 160 Mbits/s
- MC to SC (GBT)
 - Electrical, 160 Mbits/s
 - Up to 20 links per half single sided SS stave
- DC balanced code mandatory if serial powering is used, desirable in all cases
- On-going work to assess what is achievable at different places

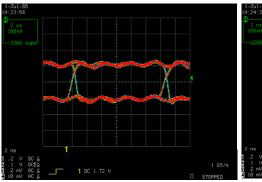
- Optical links at >3.2 Gbits/s
 - Rely on the versatile link project

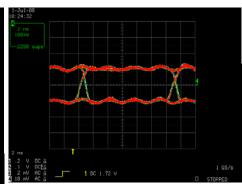

TTC Links

- The TTC links are used to transmit to the front-end:
 - A clock synchronised with the beam (either the LHC clock or a multiple of it)
 - The L1A
 - Synchronous commands such as the bunch counter reset (BCR) or the event counter reset (ECR)
 - Control data to be stored in the FEICs, MCs and SMCs (e.g. threshold, masks, ...)
- Unidirectional links to minimise the number of lines
 - To read a register, command transmitted on TTC link, data transmitted on the read-out data link
- TTC links bandwidth dictated by :
 - Clock frequency to be transmitted
 - Might be better to transmit a clock at higher frequency than the BC to be used directly by the readout logic (e.g. 160 Mhz if reading out at 160 Mbits/s. Avoid some PLL)
 - Necessity to transmit simultaneously the L1A and commands (e.g. Bunch Counter Reset)
 - Need for forward error correction to fight SEUs
 - Need for DC balanced codes and self clock recovery protocols
- Bandwidth greater than or equal to 80 Mbits/s

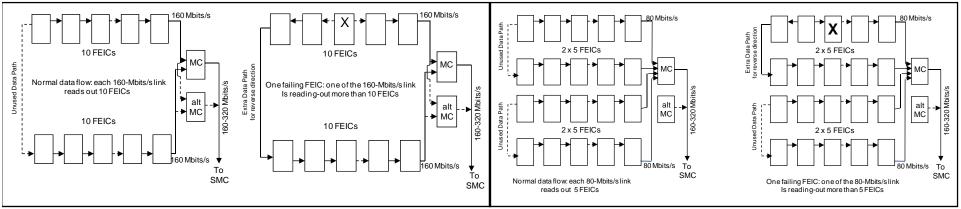
Detector


Electrical Links


- Protocols not defined
 - Clock and data separated versus single encoded link
 - Several low speed links versus a single high speed
 - Multi-drop or point-to-point
- A few pictures of some promising tests



V. Fadeyev



80 Mbits/s on an hybrid with 10 and 20 FEICs

A. Greenall

Possible redundancy schemes to cope with the loss of a FEIC or of a Module Controller

- Redundancy has a lot of impact on the readout architecture
 - Possible schemes for redundancy on the hybrids shown
 - Full redundancy required for the optical links (?)
- Difficult to implement redundancy without increasing the number of ASICs or the amount of services
- Some work necessary to assess the needs
 - Impact of loosing a FEIC, a readout hybrid, a half single sided stave
 - Define the maximum losses allowed within the life time
 - Define the minimum reliability level needed to be better after the life time of the experiment

Data Format

- Data format used in the current detector is highly optimised in size
 - Necessary to look at each single bit to know what it is and what is following and requires synchronisation between FEICs
 - "On the fly" event building and decoding
- Might be a problem when a large amount of SEU are expected
- Could be better to consider the system as a network and to push packets of data from the FEIC up to off-detector electronics

- Pros and cons
 - Enough to only protect the headers against errors
 - Data unprotected
 - No synchronisation expected in the data transmission in the FE
 - System cannot hang
 - More complex task in the off-detector electronics
 - A lot of resources available in big FPGA
 - Extra data volume
 - To be simulated

Stave ID	Module ID	Chip ID	Data Type	Payload		
			Data	L1ID	BCID	Data
			DCS	Sensor1	Sensor2	
			Register	Register #	Data	
			•••			

Integrated with the readout or separated?

- In the current detector, a lot of direct connections of sensors
 - Not applicable for the upgrade
- A lot of discussions concerning the need for a fully separated DCS system
 - Separately powered and separate communications
 - Separate ASICs
 - Additional services....
- Still possible to run safely the detector even with the DCS integrated in the readout

- DCS env. IN

 Cooling Out

 PS cable

 SC

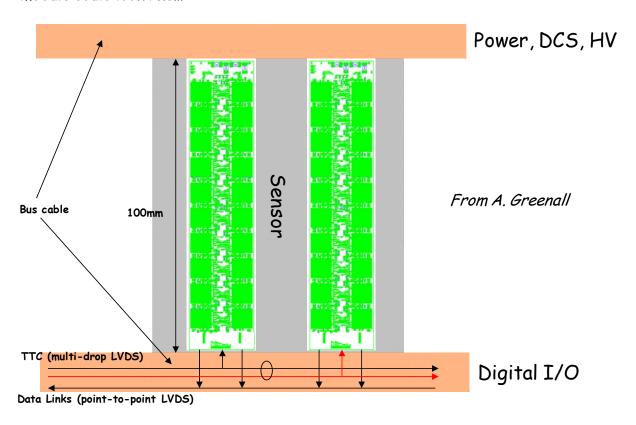
 MC

 Service bus
- A few sensors directly connected
 - Used also for interlock
- Powering sequentially the different components only when it is safe to do so
 - Note that it is easy to do with DC-DC converters but may be less with serial power
- DCS functionalities in the module controllers and the stave controllers
- Separation of the DCS data and the readout data in the off-detector electronics
 - Does not require the DAQ to work

Total Power for the Strips

Assumptions:

Detector


- Pessimistic 1.5mW [1mW] per channel for the strip FEIC and 1.3V Vdd
- 150mA [100mA] per 128-channel FEIC.
- Total current (for the barrel and both end-caps): 48.5kA [33kA]
- 80% efficiency of front-end power devices would lead to 78.5kW
 [52kW] dissipated in the tracker volume
 - 70% efficiency would lead to 90kW [60kW]
- Current SCT and TRT detectors are fed with about 12kA
- Assuming the amount of services cannot be increased, the powering scheme to be used must limit the amount of current to be fed at that level
 - That's about 1/6th (1/5th) of the current needed by the front-end electronics. Hence either a factor 5 to 6 (at least) DC-DC conversion or a serial powering scheme of at least 5 to 6 modules has to be used.

DC-DC or Serial Power

- Developments are on-going: serial powering and DC-DC conversion
 - Cf yesterday power sessions
- Reducing the current to be fed by a factor of 5-to-10 minimum is reachable with both solutions
- DC-DC converters offer some interesting flexibility
 - Can separate different supplies easily
 - Analog digital → saving in overall power
 - Stave controller, module controller and FEICs → capability of controlling the operation
 - Radiation hardness not solved
- Serial powering scheme has some system issues which are being tackled
- Options to be kept opened for a while
- Real estate is an important issue for both solutions

Space available for the power devices

A module could look like...

- Readout hybrid with 20 FEIC (ABCn 0.25 device)
- Not so much space for the power devices and the module controller...

Detector

Rough Estimate

	Ľ	V			Fibres		HV	
	DC-DC	Serial	DCS min	DCS max	No redundancy	Full redundancy	One HV per module	One HV for 2 modules
Half single sided short strips stave	2 wires 8-mm ² copper + shield (total cross- section of the cable 138 mm2)	2 wires 4-mm ² copper + shield (total cross- section of the cable 89 mm2)	12 twp (cross- section 1.57 mm ²)	15 twp (cross- section 1.57 mm2)	2 fibres (cross- section 1.57 mm2)	4 fibres (cross- section 1.57 mm2)	10 (cross- section 1.73 mm2)	5 (cross- section 1.73 mm2)
Half single sided long strips stave	2 wires 4-mm ² copper + shield (total cross- section of the cable 89 mm2)	2 wires 2-mm ² copper + shield (total cross- section of the cable 60 mm2)	12 twp	15 twp	2 fibres	4 fibres	19 (cross- section 1.73 mm2)	10 (cross- section 1.73 mm2)
Total cross-section [cm ²]	1052	692	89	111	15	30	243	126
Min total [cm ²]	922	1.54-cm thickness at R=95cm. 75% LV , 9.5% DCS, 13.5% HV, 2% Fibres						
Max total [cm ²]	1436	2.41-cm thickness at R=95cm. 73% LV , 8% DCS, 17% HV, 2% Fibres						

Services for the barrel strips at the entrance of the tracker volume

- 2-V drop max
- Packing factor of 2

1 mW/ch

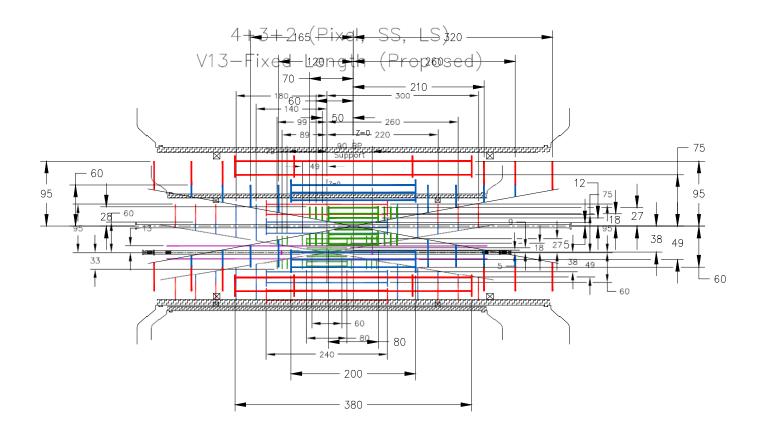
DC-DC or serial power introduces a factor 10 saving on the current

LV is still the dominant part by far

Total Fantasy

- Lol, TP and TDR in 2009, 2010 and 2011
- LHC stop: October 2016
- SLHC start: Spring 2018
- Tracker installation: January 2017 (?)
- Stave assembly start: January 2013 (?)
- Very little time left for fully specifying the components and designing them

- Choice of technology to be used (130nm or 90nm or lower) as late as possible
 - Most of the work done in 130nm so far
 - Some early work with 90nm (or lower) necessary to be able to make the decision in due time
 - Analogue performances
 - Radiation hardness


Total Fantasy (cont)

•	Architecture definition complete with options	Nov-08
•	Decision on options (powering, electrical links, opto)	Pec-09
•	Decision on options (powering, electrical links, opto) Component specifications complete Prototype sensitive blocks (design, MWP fab, test) Prototype complete component design, fab and test	Feb-10
•	Prototype sensitive blocks (design, MWP fab, test)	Sep-08 to Dec-09
•	Prototype complete component design, fab and test	Feb-10 to Aug-11
•	Stave assembly & test (system test of electronics)	Aug-11 to Feb-13
•	Pre-production component design, fab induest	Feb-12 to Feb-13
•	Pre-production stave assembly & cy on test	Feb-13 to Jul-13
•	Production Readiness Prylaw	Aug-13
•	Component Production	
	 First promotion wafer batch (fab and test) 	Aug-13 to Feb-14
	 De first production batch to module assembly sites 	Feb-14
	 Start component series fabrication (Assumes no design change from pre-production) 	Sep-13
	 Start of component series delivery to assembly sites 	Apr-14

ASICs developments and specifications

- Working document on architecture available since about a year
 - ATL-P-EN-0001 (A. Grillo, G. Darbo, Ph. Farthouat)
 - Reviewed and presented to the collaboration
- Two working groups in place to try and define more precisely the specifications of the different components. One for the pixels and one for the strips
 - Inputs to the "common projects" teams (e.g. GBT)
 - ~350k FEIC but only ~20k MC and ~5k SC(GBT)
- ABCn 0.25 chip as test vehicule for sensor studies
 - Also contains some features for testing different power schemes and readout speeds
- Preliminary study of the front-end part (preamplifier-shaperdiscriminator) in 0.13
 - Very good power performances: <200µW per channel
 - See J. Kaplon presentation of Tuesday
- Evaluation of SiGe

Fixed Barrel Length

- SS longer → more modules → more data (+20%)
- LS shorter → less modules and less data

- The readout architecture of the ATLAS upgraded tracker has to be different from the current one
- Detector organised in staves. Hierarchical readout following this segmentation
 - Fewer but higher speed links
- Some elements of the readout are not to be produced in very high quantity
 - Points towards common solutions with CMS and others
- Power distribution requires special efforts to maintain reasonable services
 - Saving factor 5 10 on the current
- Schedule looks uneasy
 - Not so much time for the electronics development
 - Decision on technology to be used for the FE electronics at the latest in 2012