

Design studies of a low power serial data link for a possible upgrade of the CMS pixel detector

Beat Meier, Paul Scherrer Institut PSI

TWEPP 2008

Motivation

Communication link between detector (pixel module) to outside the tracker volume (BPIX supply tube) with

- minimal material budget → micro twisted pair (unshielded)
- minimal power consumption → low voltage swing → differential
- minimal wiring effort (# cables) → serial data link
- 160 or 320 Mbit/s (4x or 8x LHC clock)
- 1...2 m cable length

What is possible?

Existing Data Link in CMS Pixel Detector

TWEPP 2008 - Beat Meier PSI Low Power Copper Link

Comparison to a possible new Concept

Existing System in CMS Pixel Detector

New Concept

Micro Twisted Pair Cable

cross section

First Choice:

- twisted pair self bonding wire
- 125 µm wire diameter (4um Cu)
- 10 mm per turn

Electrical characteristics:

- Impedance: 50 Ohms (very low for differencial line)
- Impedance change: 1.3 Ohms per 1 µm distance variation (Calculation done with ATLC by Sandra Oliveros UPRM)
- $v = 2/3 c_0 (5 \text{ ns/m})$
- C = 100 pF/m, L=250 nH/m

Lossy Transmission Line

- DC Resistance R_{DC} = 2.3 Ohm / m
- Skin deepth $\delta = \sqrt{\frac{2}{\omega \cdot \mu \cdot \sigma}} \rightarrow 8.5 \ \mu m \ at 100 \ MHz \ (wire diameter 125 \ \mu m)$
- AC Resistance $R(\omega) = \sqrt{R_{DC}^2 + R_{AC}^2(\omega)}$, $R_{AC}(\omega) = \frac{1}{\pi d \delta \sigma}$ \rightarrow 8.5 Ohms at 100 MHz
- Proximity effect probably increases R_{AC} by a factor of 3
- Line Impedance $Z_l(\omega) = \sqrt{\frac{j \omega L + R(\omega)}{j \omega C}}$
- Propagation coefficient $\lambda(\omega) = \sqrt{j \omega C (j \omega L + R(\omega))}$
- 50% signal power loss in a 2 m cable

Data Link on electrical Level

Transmitter | Data | V+ | V- | Data | V- | Data | Data | Data | DC current path | D

- Differential Current Driver (LCDS) from CMS Pixel
- rise time < 400 ps
- DC loop closed over power lines
- output signal adjustable with IDC

Bidirectional Data Link

Logic Levels

	V+	V-	diff	sum
L	0	IDC	-IDC	IDC
Н	IDC	0	+lDC	IDC
high Z	IDC/2	IDC/2	0	IDC

- Driver has a I_{diff} = 0 state
- No common mode
- fast switch of data direction

Test Chip Layout

Design of a first test chip (PSI Chip Design Core Team)

• Size: 2 x 2 mm

- Technology: 250 nm CMOS IBM same as CMS Pixel ROC
- radiation hardness design
- CERN MPW submitted in April 2008
- design time was 4 weeks

Chip Test System

Eye Diagram at 160 Mbit/s

- Line length: 2 m
- Lossy line effects visible (rising and falling edges)
- Line in the RC (low frequency) and LC (high frequency) region

Simulation with Spice

Fast and slow region in rising/falling edge as a result of the lossy line

Bit Error Rate Measurements

Receiver output signal

 $V_{diff} = 7.4 \text{ mV} @ 80 \text{ Mbit/s}$ Scope bandwith limited to 1 GHz

- 80 Mbit/s and 160 Mbit/s
- Bit Error Rate < 10 -11
- Receiver design error (time asymmetry) → amplitude at receiver > 35 mV @ 160 MHz

Crosstalk

V_{diff} = 9 mV @ 80 Mbit/s Scope bandwith limited to 1 GHz

parallel line signal (asynchronous)

 $V_{diff} = 56 \text{ mV}$

- 80 Mbit/s and 160 Mbit/s (with higher level)
- No difference in bit error rate visible with/without disturbing signal
- very robust for crosstalk (twisted cable, high capacitance cable)

Tranceiver switching Time

 V_{diff} = 27 mV at transmitter

 V_{diff} = 18 mV at receiver (line end)

- Data direction switching at 160 Mbit/s
- Line length: 2 m
- minimal delay for line stabilization (less than 1 signal round trip in a 2 m line)

Power Calculations

	new Data Link	CMS Pixel
Supply Voltage	2 V	2 V
Driver Current	$0.4 \text{ mA } (V_{\text{diff}} = 20 \text{ mV}_{pp})$	2 mA
Receiver Current	0.2 mA	0.2 mA
Total Power per Link	1.2 mW	4.4 mW
Bitrate per Data Link	160 Mbit/s (320 Mbit/s)	100 Mbit/s (2.6*40)
Total electrical Links	2	6 (clock, data,)
Total Power	2.4 mW (+ PLL)	26 mW
Energy per Bit and Link	7.5 pJ (160 Mbit/s)	

TWEPP 2008 - Beat Meier PSI Low Power Copper Link

Data protocol

Implemented on the Chip (blue)

- Clock multiplier (PLL)
- Clock recovery (PLL)
- Serializer/Deserializer SER/DES

To implement on the FPGA (yellow)

- Bit coding
- Protocol

Conclusions, Outlook

- Less than 10 pJ per bit per link over 2 m
- 160 Mbit/s is ok
- No crosstalk problems, it is possible to bundle the unshielded cable

- Tests with 320 Mbit/s (probably over a distance < 2 m)
- Tests with other wires
- Tests with different data protocols
- Clock recovery