Analysis of initial performance of the ATLAS Level-1 Calorimeter Trigger

Damien Prieur
STFC Rutherford Appleton Laboratory

On behalf of the Level-1 Calorimeter Trigger collaboration

School of Physics and Astronomy, University of Birmingham, Birmingham, UK
Kirchhoff-Institut für Physik, University of Heidelberg, Heidelberg, Germany
Institut für Physik, University of Mainz, Mainz, Germany
Physics department, Queen Mary, University of London, London, UK
STFC Rutherford Appleton Laboratory, Oxon, UK
Fysikum, Stockholm University, Stockholm, Sweden
- LHC & the ATLAS detector
- Trigger system
- Level-1 calorimeter trigger
- Commissioning & Cosmic rays
The Large Hadron Collider - LHC

- pp collisions at $\sqrt{s} = 14$ TeV
- Bunch crossing: 25 ns
- 10^{11} protons per bunch
- Initial luminosity: $L_0 = 10^{31}$ cm$^{-2}$s$^{-1}$
 $(L = 50$ pb$^{-1}$/year$)$
- Low luminosity: $L_0 = 10^{33}$ cm$^{-2}$s$^{-1}$
 $(L = 10$ fb$^{-1}$/year$)$
- Nominal luminosity: $L_0 = 10^{34}$ cm$^{-2}$s$^{-1}$
 $(L = 100$ fb$^{-1}$/year$)$
- First collisions: Very soon….

- 4 Detectors:
 - ATLAS & CMS: p-p collisions, Standard Model and beyond
 - LHCb: p-p collisions, B physics, CP violation
 - ALICE: ion-ion/p-ion collisions, quark-gluon plasma
The ATLAS detector

Specifications
- **Length**: 44 m
- **Diameter**: 22 m
- **Weight**: 7000 t

Inner Detectors
- **Pixel Semi-Conductor Tracker (SCT)**
- **Calorimeters**
 - **Electromagnetic**
 - **Hadronic**
- **Muon spectrometers**
 - Monitored Drift Tubes (MDT)
 - Cathode Strip Chambers (CSC)
 - Resistive Plate Chambers (RPC)
 - Thin Gap Chambers (TGC)

Interaction Point
- **Solénoïd 2T**
- 8 toroidal magnets

Detector Component Resolution and η Coverage

<table>
<thead>
<tr>
<th>Detector component</th>
<th>resolution</th>
<th>η coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking</td>
<td>$\sigma_p/p_r = 0.05%$, $p_r < 1%$</td>
<td>$</td>
</tr>
<tr>
<td>EM calorimetry</td>
<td>$\sigma_E/E = 10%/\sqrt{E} \pm 0.7%$</td>
<td>$</td>
</tr>
<tr>
<td>Hadronic calorimetry (jets)</td>
<td>$\sigma_E/E = 50%/\sqrt{E} \pm 3%$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_E/E = 100%/\sqrt{E} \pm 10%$</td>
<td>$3.1 <</td>
</tr>
<tr>
<td>Muon spectrometer</td>
<td>$\sigma_{p_T}/p_T = 10%/p_T @ p_T = 1 TeV$</td>
<td>$</td>
</tr>
</tbody>
</table>
Cross sections & rates

- p-p inelastic cross section: 70 mb
- 23 collisions / bunch crossing \((10^{34} \text{ cm}^{-2}\text{s}^{-1})\)
 \(\Rightarrow\) pile-up
 \(\rightarrow 10^9 \text{ interactions/s (high luminosity)}\)

- Need stringent selections to keep only interesting events:
 - Search for processes with small cross-sections
 - Rejection power \(10^{12}\) \((H\rightarrow\gamma\gamma \text{ 120 GeV})\)
 - Looking for a needle in a haystack…

- Technological constraints:
 - Event size: 1.5 Mb
 - To tape: 300Mb/s

⇒ Have to reduce the acquisition rate from 40 Mhz to 200 Hz
Trigger strategy

L1
- Dedicated hardware (ASICS & FPGAs)
- Calorimeters & muons
- Latency < 2.5 μs
- L1A 75 kHz

L2
- ~500 dual CPUs
- Full granularity
- Regions of Interest (~2%)
- Latency ~40 ms
- L2A 2kHz

Event Filter (L3)
- ~1600 dual CPUs
- Access to full event & calibration constants
- More detailed reconstruction
- Use Offline algorithms
- Latency ~1s
- 200 Hz
3 sub-systems
- L1 - Calorimeters (L1Calo)
- L1 - Muons
- Central Trigger Processor (CTP)

Signature identification
- e/\gamma, \tau/h, jets, \mu
- Multiplicities per \pT threshold
- Isolation criterion
- Missing \ET, total \ET, jet \ET

CTP
- Receive & synchronize trigger information
- Generate level-1 trigger decision (L1A)
- Deliver L1A to other sub-detectors
L1 Calorimeter - Architecture

- L1Calo partitioned into 3 sub-systems
 - Pre-Processor (PPr)
 - Receive & sample signal from calorimeters
 - Coarser granularity (Trigger Towers)
 - Noise filter
 - Bunch crossing identification (BCID)
 - Determine final E_T value

- Processors JEP & CP
 - Physics algorithms
 - Search for and identify:
 - isolated leptons, taus
 - jets
 - Compute E_T total, missing,…

- Real time transmission to CTP
- DAQ + RoIs at each L1A (75kHz)
Trigger towers (TT)

- Analogue summation of calorimeter cells
- 3584 x 2 (EM+HAD) trigger towers

<table>
<thead>
<tr>
<th>Position</th>
<th>$\Delta \eta \times \Delta \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>$2.5 <</td>
<td>\eta</td>
</tr>
<tr>
<td>$3.1 <</td>
<td>\eta</td>
</tr>
<tr>
<td>$3.2 <</td>
<td>\eta</td>
</tr>
</tbody>
</table>
Pre-Processors - Energy reconstruction

Receivers (Rx)
- Input signal conditioning to L1 ($2.5V \rightarrow 250GeV$)
- Variable gain amplifier (VGA)
- $E \rightarrow E_T$ Conversion (Hadronic layers only)
- Local signal monitoring

Sampling
- 40 Mhz, Flash-ADC 10 bits
- 1 ADC = 250 MeV
- Pedestal 40 ADC

Bunch crossing identification (BCID)
- Finite impulse response filter (FIR)
- Peak finder (linear/saturated)
- Assign E_T to the ‘correct’ bunch crossing

E_T calibration
- Look-Up Table (LUT)
- Pedestal subtraction, noise suppression
- ADC (10b) \rightarrow GeV (8b) conversion

Transmission to processors & DAQ
Regions of Interest (RoI)

- Processors input is a matrix of tower energies
- Algorithms look for physics signatures (sliding window)
- RoI’s sent to Level-2 trigger

Criteria for e/γ or τ/h candidate:
- EM or Had. cluster $> E_{\text{threshold}}$
- Total E_T in EM Isolation Ring \leq EM isolation thresh.
- Total E_T in Had. Isolation Ring \leq Had. isolation thresh.
- Local E_T Maximum compared to neighbor windows.

- e/γ only:
 - Had. core \leq core isolation threshold

Jet candidate
- Coarser granularity 0.2x0.2 (jet element)
- Digital summation EM + Had.
- Sliding, overlapping windows (3 sizes)

Missing energy

See next talk by Andrea Neusiedl
Installation & Commissioning

- **System fully installed since end of 2007**
 - Hardware production achieved
 - Last modules installed
 - Cabling finalized

- **Commissioning**
 - Hardware/software testing
 - Calibration procedures with calorimeters
 - Several integration & data taking campaigns

- **Cosmic muons**
 - Proved to be very useful
 - Acquisition chain understanding
 - Analogue & digital parts
 - Calorimeters - L1Calo comparisons
 - Assess system stability
 - Triggering on muons
 - Proof that L1Calo is behaving correctly
Event display of a cosmic muon

Run 29576

EM calorimeter

Tile calorimeter

L1Calo - Had

Rutherford Appleton Laboratory - Damien Prieur - TWEPP08 - 16.09.2008
Pedestal & Noise

- Pedestals set to 40 ADC counts
- Sensible RMS ~ 400 MeV
- Nearly all channels behaving correctly (>99%)
L1Calo reconstructed E_T vs calorimeter precision readouts
Cosmic muons
Reasonable correlation achieved
Very crude calibration applied, still room for improvement
EM & Hadronic cluster Energy

- E_T for Cluster Processor RoIs
- 8 E_T thresholds for e/γ & τ/h
- Show the thresholds are working
- Steps between thresholds correspond to
 - Different pre-scale settings
 - HLT algorithms at Level-2
Trigger rates

- Long overnight cosmic runs
 - 1 luminosity block = 5 minutes
- Stable trigger rate at level of few Hz
- Capability to separate good events from background
- Rate monitoring tools
 - Very useful to spot hot channels
Conclusions

System fully installed since end of 2007
- Cabling, Hardware & signal testing,…
- Technical & integration runs with other sub-detectors

Cosmic runs
- Providing trigger in all the last campaigns
- Very useful for debugging
- More control over the system (stability, rates…)
- Proved capability to trigger reliably

Toward the first collisions…
- Preparing for beam
- Fully operational L1Calo trigger
 - >99% working channels
 - Timing will be crucial
- Focusing on calibration procedures
 - See poster by Rainer Stamen
- Performance
 - Trigger efficiency
 - Correction for misbehaving channels
Beam splash
Average offset from L1A timing in EM layer
Timing calibration

- Internal timing of L1Calo trigger is achieved
- Input timing realized in pre-processors
- Not a trivial task
- Several strategies depending on signal origin:
 - calibration
 - cosmic rays
 - collisions
- Different setup & automatic procedures
 - Setup coarse/fine timing
 - Ensure signals are correctly sampled (3rd sample at maximum)
 - Signal shape with 1 ns sampling step

- LAr EMB timing from pulser run
- Coarse timing ok
- Focusing on fine tuning
Calorimeters

- Electromagnetic calorimeter
- Hadronic calorimeter – End cap
- Forward calorimeter

Rutherford Appleton Laboratory Damien Prieur - TWEPP08 16.09.2008
Central Trigger Processor (CTP)

- **Receive, synchronize** and **align** trigger information
- **Other signals:**
 - Random trigger
 - Calibration
 - Minimum bias events (MBTS)
- **Generate the level-1 trigger decision (L1A)**
 - Programmable trigger menu
 - Latency 100 ms (4BC)
- **Deliver the L1A to the other sub-detectors**

<table>
<thead>
<tr>
<th>Entrées</th>
<th># Seuils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muons</td>
<td>6 x 3 bits</td>
</tr>
<tr>
<td>EM</td>
<td>8 x 3 bits</td>
</tr>
<tr>
<td>Hadrons</td>
<td>8 x 3 bits</td>
</tr>
<tr>
<td>Jets</td>
<td>8 x 3 bits</td>
</tr>
<tr>
<td>ET miss</td>
<td>8 bits</td>
</tr>
<tr>
<td>Jet ET</td>
<td>4 bits</td>
</tr>
<tr>
<td>Et totale</td>
<td>4 bits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu</th>
<th>PreScale</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MU10 & 1EM15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1EM1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1TAU6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1J4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NIM0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RNDM0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RNDM1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

160 entries 256 items