## Microelectronics User's Group @ twepp2008

Topical Workshop on Electronics for Particle Physics Naxos, Greece 16/9/2008



#### Presentation:

"Access to ASIC design tools and foundry services at CERN for SLHC"

Open discussion

## Access to ASIC design tools and foundry services at CERN for SLHC

Kostas Kloukinas CERN, PH-ESE dept. CH1211, Geneve 23 Switzerland



- Access to advanced technologies through CERN
- The 130nm Digital Design Kit
- Access to Foundry Services through CERN



## Overview of Technologies

#### **CMOS 8RF-LM**

Low cost technology for Large Digital designs

#### **CMOS 8RF-DM**

Low cost technology for Analog & RF designs

#### **BiCMOS 8WL**

Cost effective technology for Low Power RF designs

#### **BICMOS 8HP**

High Performance technology for demanding RF designs

#### **CMOS 9SF LP/RF**

High performance technology for dense designs

#### 130nm CMOS

90nm CMOS

- 130 (CMOS and BiCMOS) and 90 nm contract available since 6/2007.
- Future technologies can be negotiated with the same manufacturer, once the necessity arise.



## CMOS8RF Technology Features

#### Standard Features

- 130 nm lithography, twin-well on 1-2 Ωcm non-epi P- substrate, low K dielectric
- Thin Oxide (22Å gate) FETs (1.2 /1.5V)
- Thin Oxide MOS Varactors
- Forward bias diodes
- N-well resistor
- 5 to 8 levels of metal
  - Thin and thick Cu metal (~0.3/0.55 μm)
  - Last metal options:
     LM: Cu 0.55μm
     DM: 3 μm Cu + 4 μm Al
- Vertical Natural Capacitor
- Spiral inductors, RF Transmission lines
  - Series & Symmetrical inductors in DM wiring option only
- Electrically programmable fuses
- Wire bond or solder bump (C4) terminals

#### **Optional Features**

- Triple-well NFETs
- Thin Oxide Low power FETS
- Thin Oxide Low-Vt FETs
- Thick Oxide (52Å) 2.5V FETS
- Thick Oxide (52Å) 3.3V FETS
- Thin and thick Oxide Zero-Vt NFETs
- Thick Oxide MOS Varactors
- Hyperabrupt Varactor
- Polysilicon and diffused resistors
- TaN metal resistor
- Single and dual-layer MIM capacitor (DM option only)



## CMOS8RF Wiring options

|              | LM Last Metal |     |     |     |     |     |     | DM Last Metal |     |     |     |  |  |
|--------------|---------------|-----|-----|-----|-----|-----|-----|---------------|-----|-----|-----|--|--|
|              | 8             | 7   | 8   | 7   | 6   | 5   | 6   | 7             | 7   | 8   | 8   |  |  |
| DM<br>Option |               |     |     |     |     |     | MA  | MA            | MA  | MA  | MA  |  |  |
|              |               |     |     |     |     |     | E1  | E1            | E1  | E1  | E1  |  |  |
|              |               |     |     |     |     |     | LY  | LY            | LY  | LY  | LY  |  |  |
| LM<br>Option | LM            | LM  | LM  | LM  | LM  | LM  |     |               |     |     |     |  |  |
| 2X           | MG            | MG  |     |     |     |     |     |               | MG  | MG  |     |  |  |
| Levels       | MQ            | MQ  | MQ  | MQ  | MQ  | MQ  | MQ  | MQ            | MQ  | MQ  | MQ  |  |  |
|              |               |     | M6  |     |     |     |     |               |     |     |     |  |  |
|              | M5            |     | M5  | M5  |     |     |     |               |     |     |     |  |  |
| 1X<br>Levels | M4            | M4  | M4  | M4  | M4  |     |     |               |     |     | M4  |  |  |
|              | Мз            | Мз  | Мз  | Мз  | Мз  | Мз  |     | Мз            |     | Мз  | Мз  |  |  |
|              | M2            | M2  | M2  | M2  | M2  | M2  | M2  | M2            | M2  | M2  | M2  |  |  |
|              | M1            | M1  | M1  | M1  | M1  | M1  | M1  | M1            | M1  | M1  | M1  |  |  |
| Code         | 5-2           | 4-2 | 6-1 | 5-1 | 4-1 | 3-1 | 2-1 | 3-1           | 2-2 | 3-2 | 4-1 |  |  |



## Access to Technology Data

What you need to start designing.

#### Distributed by CERN

| Technology | Process | Distributable       |
|------------|---------|---------------------|
| CMOS8RF-LM | 130nm   | IBM PDK Digital Kit |
| CMOS8RF-DM | 130nm   | IBM PDK             |
| BiCMOS8WL  | 130nm   | IBM PDK             |
|            | (SiGe)  | IBM PDK             |
| BiCMOS8HP  | 130nm   | IDIVI PUK           |
| 2.0        | (SiGe)  | IBM PDK             |
| CMOS9SF    | 90nm    |                     |
| IDM DDK    |         |                     |

IBM PDK : Physical Design Kit for <u>Analog and full custom design</u>.

Digital Kit : Design Kit that supports <u>Digital design</u>.



## Digital Design Kit



#### Technology

- Complex physical design rules and Manufacturability constrains.
- Multiple corners for design simulations.
- Tough Signal Integrity issues, and difficult final Timing Closure.
- Expensive prototyping.

#### CAE Tools

- Multiplicity of tools and complicated non linear design flows.
- Numerous data formats used when interfacing tools from different tool vendors.

#### Designs

- Demanding Power analysis and power management.
- Chip level integration and assembly.
- Large chips require to extend design efforts to multiple teams across geographically distributed institutes.



- Formalize the digital design flow in our design environment.
  - Allow designers of the HEP community to become familiar with complex tools, necessary to master large designs in a modern technology.
- Assist large digital design with an automated flow.
- Common design platform across multiple institutes.
  - Enhance team productivity.
- Provide a silicon accurate methodology.
  - Increase silicon reliability.



## The CMOS8RF Design Kit

- Target process: CMOS8RF-LM (130nm)
- Features:
  - Integrate the ARM core & IO library cells.
  - Consolidate the usage of CAE tools.
  - Provide a complete and automated Digital design flow.
- Distribution:
  - CERN
  - External Institutes
    - Already installed in 7 labs.
- Training:
  - 5 training courses organized @ CERN





#### RTL - TO - LAYOUT



Formalize the Digital Design Flow in our work environment.

Provide a common platform for design tools.



## The MR Digital Flow in detail





## V1.4 Design Kit validation

#### Validating the kit:

- I<sup>2</sup>C interface chip
  - Full digital chip.

#### Preshower Kchip

- Third party IP core integration (DP SRAM).
- FIFO controller P&R O.K.
- Implemented in 6LM and 8LM metal stacks.
- Used as example in training courses.





## Development Roadmap

# V1.4 (current version) • Change list •Integrate the IBM PDK V1.4.0.3 •Integrate the ARTISAN GPIO 2007q3V2 •Bug fixes. V1.5 (4Q2008) • Change list •Integrate the IBM PDK V1.4.0.10 •Integrate C4 IO pads •Support latest Europractice distribution of CAE tools. •Bug fixes

- Evolution in industry (MR inc. and ARM) is forcing us to discontinue the development work and eventually the technical support of the Digital Design kit.
- A New Design Kit solution is currently being studied.
  - Cover broader spectrum of functionalities (Analog, Digital & Mixed Signal design.)
  - Based on a commercially available solution.
  - Depending on demand, the kit could be made available for distribution in 2Q,2009.
  - Cost is expected to be higher than the previous solution.



## New Design Kit Functionalities 1/2

#### Design Environment Setup

- Integrates foundry PDKs, and Physical IP libraries.
- Preliminary information Initialises the CAE tools design environment (env. variables, files, and director structures) to meet the target technology configuration. (ex. BEOL options).
- No additional coding or scripting necessary.
- Configuration management per designer and per project.

#### Analog & Mixed Signal (AMS) methodology.

- Top-down design Partitioning.
- Top-down mixed-Signal Simulation & design Concept Validation
  - Concurrent use of behavioural models, transistor-level schematics and simulation testbenches.
- Multiple power supply management.
- Semi-automated Flow for digital implementation
- Hierarchical design Floorplaning and Physical Assembly
- Design Performance Validation and Physical Verification



## New Design Kit Functionalities 2/2

#### Automated Digital Flow

- RTL-to-GDSII path, for rapid development of larger digital designs.
- Based on platform independent tcl-code.
- GUI and command mode interfaces.

#### IP integration workflow

- Ability to seamlessly integrate IP from multiple sources in the Design Kit.
- Generates all necessary data structures "views" need by the CAE tools.
- Compatible to "Europractice" CAE tools distribution.

#### CERN could provide:

- Training courses
- Maintenance through CERN
- Technical Support

Preliminary information



- Acquiring the IBM PDK and/or the Digital Design Kit
  - Contact <u>Bert.Van.Koningsveld@cern.ch</u> or <u>Kostas.Kloukinas@cern.ch</u>
  - You will be given an account on CERN's LXPLUS.
  - You will be able to "sftp" the Design Kit.

#### Users Support

- Limited to the distributed Design Kit version, running under the supported versions of the CAE design tools.
- Distribution of:
  - Design Flow patches for bug fixes.
  - Technology file updates for DRC verification.
  - Updates to accommodate for foundry and IP vendor newer releases as well as CAE tools upgrades.
- SUN SOLARIS platform only will be supported (no Linux, sorry!).



## Foundry Services



## Access to Foundry Services

#### Technologies:

- □ IBM CMOS6SF (0.25µm), legacy designs
- □ IBM CMOS8RF (130nm), mainstream process
- □ IBM CMOS8WL & 8HP (SiGe 130nm)
- □ IBM CMOS9SF (90nm), option for high performance designs



#### MPW services:

- CERN offers to organize MPW runs to help in keeping low the cost of fabricating prototypes and of small-volume production by enabling multiple participants to share production overhead costs
- CERN has developed working relationships with MPW provider MOSIS as an alternate means to access silicon for prototyping.



- CMOS8-RF process including:
  - poly and diff resistors
  - triple well
  - Low-Vt N and PMOS
  - Zero-Vt NMOS
  - e-fuses
  - Thick (5.2 nm) transistors for IO @ 2.5 V
- 6 metals with LM upper stack, all Cu
  - Vertical metal to metal cap: 1.3 fF/um²
  - 8 metals possible for private runs (+ 70K\$)
- C4 bonding if desired (run split possible).
- Hundreds (or thousands!) of chips from proto run.
- Preferred chips sizes: multiple of 2x2 mm<sup>2</sup>.
- Cost below MOSIS at about 80-90 mm<sup>2</sup>.



#### **Comparison of MPW cost**



- At present the level of demand is below threshold for CERN-organized MPW
  - Last MPW had 3 users sharing 20 mm<sup>2</sup> silicon area. (Submitted to MOSIS for fabrication.)



## Fabricating through MOSIS

#### Our alternate path for prototyping



- Turn Around Time: ~70 calendar days from release to foundry
- Number of prototypes: 40 pieces



#### **MOSIS MPW Fabrication Schedule (indicative\*)**

|                         | <b>  -</b> 2008 <b>-  </b> |     | 2009 |     |     |     |     |     |     |     |     |     |     |     |
|-------------------------|----------------------------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                         | Nov                        | Dec | Jan  | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| CMOS8RF-DM <sup>1</sup> | 17                         |     | 20   |     | 16  |     | 11  |     | 20  |     | 21  |     | 9   |     |
| BiCMOS8WL               |                            |     |      | 23  |     |     | 18  |     |     | 24  |     |     | 16  |     |
| BiCMOS8HP               |                            | 8   |      |     | 16  |     |     | 22  |     |     | 28  |     |     | 14  |
| CMOS9LP/RF              |                            |     |      | 23  |     |     |     | 22  |     |     |     | 26  |     |     |

- (\*) as published on the MOSIS web site: http://www.mosis.com/ibm/ibm\_schedule.html
- (1) 8RF-LM 0.13 µm designs can be added to 8RF-DM runs with sufficient advance notice
- Early scheduling is essential for cost effective prototyping.
- Communicate your submission plans with: <u>Kostas.Kloukinas@cern.ch</u>
- There are some advantages to submit to MOSIS via CERN.



- Centralized foundry services.
  - Provide access to advanced technologies by sharing expenses.
  - Provide standardized common design flows.
  - Provide access to shared tools and common IP blocks.
  - Organize common Training and Information sessions.
- Availability of foundry and technology services is modulated by user's demand.
- Your feedback is welcomed. Please contact:
  - Organizational issues, contracts etc.:
    - Alessandro.Marchioro@cern.ch
  - Technology specific:
    - Kostas.Kloukinas@cern.ch
  - Access to design kits and installation:
    - Bert.van.Koningsved@cern.ch



## THANK YOU



Presentation:

"Access to ASIC design tools and foundry services at CERN for SLHC"

Open discussion



#### Design Tools Required to use the Digital Kit V1.4

| Tool                       | Version       |  |  |  |  |
|----------------------------|---------------|--|--|--|--|
| CADENCE DFII               | IC5.1.4.1     |  |  |  |  |
| First Encounter            | 4.1.USR5      |  |  |  |  |
| Fire & Ice                 | SEV_3.2       |  |  |  |  |
| Prime Time                 | X-2005.12-SP2 |  |  |  |  |
| CeltIC                     | TSI42_USR1    |  |  |  |  |
| Calibre                    | 2004.3_9      |  |  |  |  |
| Synopsys DC, PC            | 2005.09.SP3   |  |  |  |  |
| CADENCE Incisive Simulator | IUS_5.7       |  |  |  |  |



User support is limited to installations using these versions only.



- Radiation hardness is required for the SLHC and this technology could be considered as a "military asset" by the US authorities.
  - This could entail restrictions in the process of obtaining an export license from US for those state-of-the-art technologies.
- Delicate negotiations are ongoing with US authorities.
  - Allow HEP labs to access US based technologies.
  - Allow US collaborators to continue working on common HEP projects utilizing those technologies.
- Survey for an alternate, EU based, foundry is ongoing.



## Key Technology Features

|                       | 8RF-LM                                                                   | 8RF-DM                                                                   | 8WL                                                                                | 8HP                                                                      | 9SF                                                                      | 9LP/RF                                                                   |
|-----------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Process               | 130nm                                                                    | 130nm                                                                    | 130nm<br>SiGe                                                                      | 130nm<br>SiGe                                                            | 90nm                                                                     | 90nm                                                                     |
| Vdd (V)               | 1.2/1.5                                                                  | 1.2/1.5                                                                  | 1.2                                                                                | 1.2                                                                      | 1.0/1.2                                                                  | 1.0/1.2                                                                  |
| Pad cell (V)          | 2.5/3.3                                                                  | 2.5/3.3                                                                  | 2.5/3.3                                                                            | 2.5/3.3                                                                  | 2.5                                                                      | 2.5                                                                      |
| Level of Metals       | 6-8                                                                      | 6-8                                                                      | 6-8                                                                                | 6-8                                                                      | 4-10                                                                     | 4-10                                                                     |
| Metalization          | Cu                                                                       | Cu + Al                                                                  | Cu + Al                                                                            | Cu + Al                                                                  | Cu                                                                       | Cu                                                                       |
| Analog Thick Metal    | No                                                                       | Yes                                                                      | Yes                                                                                | Yes                                                                      | No                                                                       | Yes                                                                      |
| Density (Kgates/mm2)  | 200                                                                      | 200                                                                      | 200                                                                                | 200                                                                      | 400                                                                      | 400                                                                      |
| Power (µw/MHz/gate)   | 0.009                                                                    | 0.009                                                                    | 0.009                                                                              | 0.009                                                                    | 0.006                                                                    | 0.006                                                                    |
| Ring Osc. Delays (ps) | 27                                                                       | 27                                                                       | 27                                                                                 | 27                                                                       | 21                                                                       | 21                                                                       |
| Bipolar beta          | -                                                                        | -                                                                        | 230                                                                                | 600                                                                      | -                                                                        | -                                                                        |
| Bipolar ft (GHz)      | -                                                                        | -                                                                        | 100                                                                                | 200                                                                      | -                                                                        | -                                                                        |
| MIMcap (fF/μm²)       | n/a                                                                      | 2.05                                                                     | 4.1                                                                                | 1.0                                                                      | n/a                                                                      |                                                                          |
| VNCAP (fF/µm²)        | n/a                                                                      | 1.3                                                                      | 1.3                                                                                | n/a                                                                      | n/a                                                                      |                                                                          |
| Resistors             | n <sup>+</sup> diff.<br>p <sup>+,</sup> p <sup>-</sup> poly.<br>tantalum | n <sup>+</sup> diff.<br>p <sup>+,</sup> p <sup>-</sup> poly.<br>tantalum | n <sup>+</sup> diff.<br>p <sup>+,</sup> p <sup>-</sup> poly.<br>p poly<br>tantalum | n <sup>+</sup> diff.<br>p <sup>+,</sup> p <sup>-</sup> poly.<br>tantalum | n <sup>+</sup> diff.<br>p <sup>+,</sup> p <sup>-</sup> poly.<br>tantalum | n <sup>+</sup> diff.<br>p <sup>+,</sup> p <sup>-</sup> poly.<br>tantalum |
| efuse                 | yes                                                                      | yes                                                                      | yes                                                                                | yes                                                                      | yes                                                                      | yes                                                                      |



## Tools Used in Standard Flows

- Design Compiler dc dc\_shell -tcl
  - Used to convert functional RTL to gates using WLM to size output drivers
- Physical Compiler pc psyn\_shell
  - Can synthesize RTL and perform placement simultaneously using steiner routes to estimate parasitics instead of WLM.
  - Can perform placement of gate level netlist
  - Can perform placement based optimization
- First Encounter fe encounter
  - Used for prototyping digital designs, producing physical information for optimizing logic, complete power-grid realization, and hierarchical controls for partitioning and budgeting, and hierarchical clock tree synthesis.
- Physically Knowledgeable Synthesis pks pks\_shell
  - Optimizes the critical paths, taking congestion information into account, and uses true global routing to determine interconnect timing.

Manhattan Routing Inc.



### Tools Used in Standard Flows

#### Nanoroute

All-purpose router for top-level and block-level routing

#### Qx/Fire & Ice - qx

2.5D extractor based on validated tech files available from major foundries.
 Outputs RCs in DSPF/SPEF format for timing, signal integrity, power, and reliability sign-off verification

#### Celtic

SI-aware delay calculator that provides a unified timing solution that accurately accounts for the impact of crosstalk and IR drop on both delay and functionality. CeltIC NDC combines crosstalk analysis from CeltIC signal-integrity analyzer with the delay calculation capabilities of SignalStorm® NDC. Celtic NDC can be used to complement both Cadence and non-Cadence static-timing analysis and place-and-route flows.

#### PrimeTime - pt - pt\_shell

 Full-chip, gate-level static timing analysis tool optimized to analyze millions of gates in a short time, allowing multiple analysis runs in a single day

#### Calibre

Industry standard physical verification tools. DRC/LVS

#### Manhattan Routing Inc.