

Talk Overview

- What is the SCT?
- How does it work?
- Status of commissioning
- What tests are performed?
- Test results
- Cooling problems
- First cosmic data run
- Outlook

Semi-Conductor Tracker

- 61 m² of silicon strip sensors
- 6.2 million readout channels
- Radiation hardness: 2 x 10¹⁴ 1- MeV neutron equivalent cm⁻² (10 years LHC)

Endcap inner module

- Sensor cooled at -10 deg C using C₃F₂ coolant.
- Up to 500 Volt bias voltage
- Power consumption: 5.6 W/module(10 W after 10 years of LHC)

- Single-sided back-to-back p-on-n sensors
- 40 mrad stereo-angle
- 1536 channels per module
- 6 chips on each module side
- Binary read-out
- Optical communication

- Signal induces current on strip
- Current on strip integrated at pre-amplifier and voltage output
- Signal shaped and noise filtered
- Signal voltage compared to a pre-set threshold voltage
- Hit '0' or '1' returned and stored in a
- Data compression logic
- Charge injection circuitry (calibration)

Optical Communication

- 4088 Clock and Command links
 - -1 p-i-n diode for timing, trigger and control signals
- If signal fails, neighbouring module will provide signal.
- 8176 Data links
 - -2 VCSELs for reading data from both sides of module -
 - Redundancy in case of one link failing
- Off detector electronics sends and receives data via back of crate cards (BOC)

Inner Detector Cooling

- C₃F₈ Evaporative cooling system (Pixels +SCT)
- Fluid is evaporated through cooling loops.
- Any remaining fluid is boiled away by heaters in the exhausts of cooling lines
- Temperature of gas raised above cavern dewpoint to avoid condensation)
- Gas condensed and liquid recovered
- Current Status: Cold!!

With modules powered: Barrel -3to -1 degC Endcap -5 to -4 degC

- 3 Assembly sites
- Oxford: 4 barrels
- NIKHEF: Endcap A
- Liverpool: Endcap C

ATLAS Integration Timeline

- Electrical Connections
 - Check LV arrives at modules: Vdd, Vcc, Ipin, Ivcsel
 - HV current scan
 - Check temperature readings
- Optical Connections
 - P-i-n diode current measurement:
 - Light from data fibre measured at BOC
 - Ensures good fibre connections and correct mapping in place
- Calibration Tests
 - Digital and Analogue functionality of front-end tested
- Cosmic Tests
 - Milestone 6 run: Global commissioning run with ATLAS subdetectors

Results: Electrical Tests

- I V scan measured in 10V steps from 0 -150V
- Multiple current measurements recorded for each voltage step.
- Two manufacturers of module sensor:
 - Hamamatsu: Field plate geometry
 - CiS: Aluminium strip narrower than p-implant
- Non-field plate geometry, higher surface currents

Module Temperatures

Input Noise

Percentage of functional channels for 2008 (hardware)

- Endcap C suffered from 2 leaks and a heater power cable short -
- Loop 204: disk 9 Q4 operates well at 3b BP
- Loop 186: disk 9 Q2, 13 modules lost
- Loop 183: disk 1 Q1, 23 modules lost (heater short)

	Barrel	Endcap A	Endcap C
Total number of modules	2112	988	988
Modules not functional			4
(powering problem)	3	0	1
Modules not cooled in 2008		F	36
Individual dead strips [%]	0.2	0.3	0.3
Chips lost through			
redundancy readout	13	0	0
	200		
Fraction of functional			
channels [%]	99.61	99.70	95.96

Cooling Problems

- Feb 2007 heaters failed (barrel commissioning)
- Moisture getting into connector, so sleeves were retrofitted
- They failed once more in May 2007
- Heaters moved to more serviceable area, involving more pipe work!
- Heater completely re-designed. No problems so far

THEN.....

- March 2008, 3 ID compressors failed catastrophically!
- Magnetic couplers slipped during cooling start up (they drive crank which performs compression)
- ≥ 100 kg C₃F₈ lost, 900 kg contaminated
- Fortunately only cooling plant affected, not detector.
- Huge clean up operation. New parts built, replacement pipework needed
- Filters put in pipes and recovery tank made to avoid any future losses.
- Sensors to detect slipping of couplers.

Commissioning with cosmics

- In between both cooling problems, we actually managed to have a very successful week of commissioning the barrel detector using cosmics!!!
- Cosmics are a useful method for testing detector performance
- Entire readout chain of ATLAS and its sub-detectors can be tested
- Investigation into any cross talk between modules and noise as a result of synchronous SCT/TRT running.
- First look at detector alignment and tracking using real data.
- Results: -Event Displays
 - -Basic Alignment
 - -Noise occupancy

- First ATLAS milestone run for SCT
- Beginning of March for one week (1st-9th)
- First steps towards global commissioning
- Number of successful runs with tracks in SCT and TRT
- Most of SCT Barrel read out (1965 modules) 3/8 TRT read out.
- Final ATLAS reconstruction software implemented

43719: SCT, TRT, Tile,LAr,
TGC,MDT,CTP,RPC,TDAQ,HLT,LVL1
3241 Any Track Events | 1270 SCT Tracks |
1183 SCT+TRT tracks
-timed in, 1fC threshold, < 1Hz cosmic trigger
(Tile trigger and ID scintillator combination)

Event Displays

First combined track in ATLAS

Muons through to SCT!!!

Track parameters

Track residuals

Residual = X_track - X_local

(Plane perpendicular to strips)

Average noise occupancy better than requirement of 5 x 10 ⁻⁴!

The excitement of the LHC switch on: September 10th

- Only endcaps on, 20V bias (too much charge deposited along barrel strips, so they were kept out of config)
- Both endcaps completely \(\frac{1}{2}\) lit \(\frac{1}{2}\) up with beam halo muons!!!

- Barrels and Endcaps successfully installed in ATLAS cavern
- Have been extensively tested and signed off.
- Cooling problems have limited the actual commissioning period of the SCT detector.
 - New heater connectors working well, no sign off problem returning.
 - Cooling plant has new measures in place to prevent compressor burn out in future.
 - Pixel b-layer was cooled sufficiently during ATLAS beam-pipe bakeout, with the centre of the beam reaching 220 degC.
- Have had a very successful global commissioning with cosmics during milestone 6.
- first beam circulated in LHC ring at 450 GeV!!!
- Endcaps glowed with beam halo muons on September 10th

RX links: Off detector

- Need to set the correct optical threshold at the BOC for each link (all 8176 of them!!)
- This determines the threshold for a hit to be registered

- Pattern of '1's sent and returned by module to BOC
- Threshold is varied from 0-255 DAC steps.
- Several patterns of 1's over a time period are sent.
- Working range determined
- Best threshold set

- All modules return data
- Some need to be read out redundantly.

Calibration Tests

- Want to measure the noise of each channel (defective channels found)
- 3Pt Gain test- 3 charges injected: 1.5, 2.0, 2.5 fC.
- 1000 triggers are sent to module and hit threshold varied
- Occupancy counted for each theshold
- S-curve fitted with complementary error function:VT50 & output noise of the amplifier is extracted
- Linear fit applied to 50% occupancy points, gain is the slope of this fit
- Input noise calculated from output noise over gain.

Hit Efficiency = Number of Hits / Number hits expected

- Known defects not considered
- No access to conditions DB during run
- Detector not aligned
- Efficiency willimprove once theabove are implemented

NO calculation

