Readout Electronics of the ATLAS Cathode Strip Chambers

Ivo Gough Eschrich

University of California, Irvine
for the ATLAS Muon Collaboration

Topical Workshop on Electronics for Particle Physics
Naxos, Greece
September 13–19, 2008
Readout Electronics of the ATLAS CSCs

1. The ATLAS Experiment
2. The ATLAS Cathode Strip Chambers
3. The Readout Concept
4. The Hardware
5. Firmware and Software
6. Commissioning Status
7. Conclusions
Muon Spectrometer precision tracking: Monitored Drift Tubes (MDT)

- MDT safe operation up to 150 Hz/cm²; exceeded for \(|\eta| > 2\)
- CSC considered safe up to 1000 Hz/cm², sufficient up to \(|\eta| = 2.7\)
- Annual neutron flux for CSCs up to \(1.8 \times 10^{12}/\text{cm}^2\) (1 MeV equivalent); total ionizing dose up to 11 Gy/year
The ATLAS Cathode Strip Chambers (II)

- Cover high-rate, high-radiation region in endcaps
- $2.0 < |\eta| < 2.7$
- $1 \text{ m} < r < 2 \text{ m}$
- $|z| \sim 7.5 \text{ m}$
- 16 chambers each side

ATLAS Muon Side C Endcap region during installation
February 2008
Measure charge induced on cathode strips.

Interpolate between charge of neighboring strips to determine track position in plane.

Target resolution 60 μm in precision coordinate.

Small gas volume, use Ar/CO$_2$: no hydrogen, low neutron sensitivity.

Four such layers per chamber: four measured points per track.
On-Detector Electronics
- High radiation environment
- Avoid complex digital circuits
- Sample, shape, store
- Digitize on demand only
- Read out all strips
- 30720 channels total:
 - 4 layers with (192+48) strips each
 - 960 channels per chamber
 - 16 chambers per endcap

Off-detector Electronics
- Low radiation environment
- Perform bulk of data processing
- One “Readout Driver” (ROD) handles 2 chambers
- 8 RODs per crate
- RODs fully control frontend readout
- Required bandwidth for readout links 160 Mbyte/s
Drift time 30 ns, shape to bipolar pulse, first peak 70 ns after rising edge.

Sample continuously at 20 MHz: 4 samples cover positive lobe.

Samples pipelined up to 144 deep, sufficient for 2.5 µs trigger latency.

Upon level 1 trigger, digitize and read out 4 consecutive samples.
CSC Readout Electronics Overview

- RCC 1 per endcap
- TIM 1 per endcap
- ROD 8 per endcap
- CRB
- Transition Module
- Chamber
- S-LINK
- Data
- Clock, SCA Control, Etc.
- 160 Mbyte/s capacity
- 105 Mbyte/s
- 16 chambers per endcap
- 8 per endcap
- Custom J5/J6 Backplane 1 per endcap
- 160 Mbyte/s capacity
- 1 per endcap
GPU = Generic Processing Unit (DSP+FPGA module)
13 GPUs per ROD: 1 host (HPU), 12 for data processing (DPUs)
300MHz TI TMS320C62x DSP + 2 Xilinx Spartan FPGAs
ROD
- Infrastructure for data processing
- Motherboard for 13 GPUs
- Two high bandwidth buses
- Controlled via VME64x backplane
- FPGA based *(Xilinx Spartan/Virtex2)*

GPU
- Data processing (in various roles)
 Sparsification, cluster identification, fragment building, neutron rejection
- Mezzanine board with DSP
 (300 MHz TI TMS320C6203)
- DSP programmable in C++
- Interface to ROD buses via FPGAs
 (Xilinx Spartan2)

CTM
- I/O (frontend, trigger, DAQ)
- Connects to trigger/timing system via custom backplane
- Controls frontend electronics
- Duplex fiber optic connections to frontend
- GLink protocol implemented in FPGAs
 (Xilinx Virtex2 w/RocketIO)
- Fiber optic connection to DAQ via mezz card *(‘HOLA’ SLink, ATLAS standard)*
ROD Software (I): DSP Roles

HPU
- Orchestrates SPUs, RPUs, DX
- Attaches trigger info to event
- Asserts RODBUSY if necessary

SPUs
- Verify frontend data integrity
- Remove noise (subtract pedestals)
- Apply timing cuts
- Identify clusters

RPUs
- Assemble SPU fragments
- Remove non-track hits
- Provide event length to HPU
ROD Software (II): HPU Tasks

- **time critical**
 - Retrieve and buffer trigger information
 - Transfer events from SPU to RPU
 - Poll RPU for * events ready * their length
 - Assemble event and send to ROL

- **low priority**
 - Check ROD sub-systems status
 - Check SPU status
 - Perform monitoring tasks
 - Check for pending commands

- Optional
- Low priority
- Time critical

DSP software written in C++, time critical parts in assembly language

Supporting firmware written in Verilog

Important to maintain continuous pipeline flow, **queue everything, no waiting**

HPU main loop over critical tasks needs to be very fast (10 \(\mu s \))

Cycle-heavy parts of data processing parallelized (SPUs)
CSC Commissioning Status (I)

- All hardware installed, connected, and operational.
- Debugging of ROD software/firmware was substantially delayed; several factors involved, expert personnel thinly spread.
- Still tackling stability and rate problems at this point.
- Some infrastructure problems on the way only made things worse.
VME power supply oscillation

- Under certain load conditions, 3.3V and 5V voltage oscillates.
- Eventually leads to PS shutting itself down.
- Can only run max. 3 RODs per crate (need 8).
- Manufacturer now provides fix.

`jumper selectable regulation circuit time constant`

- These are detached water-cooled PS, attached to rear rack door. Problem not observed with standard PS integrated in bin.
- Connection to VME crate via \(\sim 1 \text{ m long cables} \).
- Apparently the extra cable length, together with load pattern, affects voltage regulation.
VME power supply malfunction

- Damaged control cable leads to internal fuse blowing in power supply
- This in turn must have resulted in surge on VME SYSRESET line (!)
- Fatally damaged VME buffer ICs on 8 RODs, 2 SBCs

 one ROD with two blown traces!

- Fortunately, replacing the ICs (and jumpering the traces) was sufficient to put RODs back in service.
Conclusions

- Muon tracking in the forward region of ATLAS is performed by cathode strip chambers.
- On-chamber readout electronics are kept as simple as is practical.
- Noise reduction measures are entirely performed off-detector.

- Off-detector electronics use DSPs for noise reduction and event building.
- Status: hardware installed, firmware/ software still being debugged.