#### Serial Powering of Silicon Strip Modules for the ATLAS Tracker Upgrade



Peter W Phillips
STFC Rutherford Appleton Laboratory
On behalf of RAL group and collaborators



# Recall: Powering the present SCT





- 4088 Detector Modules
- Independent Powering
  - 4088 cable chains
  - 22 PS racks
  - 4 crates / rack
  - (up to) 48 LV and 48 HV channels / crate
    - Installation a major logistical challenge!
- Overall efficiency ~40%
  - Cable R => voltage drops
  - Voltage limiter in line to protect against spikes due to sudden drops in load



# Why Choose Serial Powering?

The power consumed by n hybrids is always **n I V**, but the power wasted in cabling depends upon the powering scheme!

for 
$$x = 6 (2.5A * 3.5 \Omega / 1.5 V)$$



10 modules in series increases efficiency by factor ≈4

Consider n hybrids with:

hybrid current I
hybrid voltage V
off-detector cable resistance R
DC-DC gain g

and define x = IR/V

|           | I <sub>sm</sub> | $V_{drop}$ | $V_{sm}$ | P <sub>cab</sub>      | Efficiency:              |
|-----------|-----------------|------------|----------|-----------------------|--------------------------|
|           |                 |            |          |                       | $P_{sm}/P_{total}$       |
| IP        | nl              | IR         | V        | nl <sup>2</sup> R     | 1/[1 + x]                |
| PP        | nl              | nIR        | V        | n² I²R                | 1/[1 + <b>n</b> x]       |
| SP        | I               | IR         | nV       | I <sup>2</sup> R      | 1/[1 + x/n]              |
| DC-<br>DC | nl<br>g         | nIR<br>g   | gV       | $\frac{n^2l^2R}{g^2}$ | $\frac{1}{[1 + xn/g^2]}$ |

=> Low V bad, large R and I are bad



# Why Choose Serial Powering?

#### **Motivations**

- Fewer Cables
- Fewer Connections
- Increased Efficiency
- · Reduced Material

#### Concerns

- Noise/electrical performance
  - In fact SP systems are clean:
    - local regulation helps
    - chain current constant, therefore no IR drops
- Failure in the chain loss of many modules

• . . .



# **Evolution of Serial Powering Circuitry**

**SSPPCB** - **2006/7** *38 mm x 9 mm* 

**SPPCB** - **2006** 111 mm x 83 mm

**SPPCB** - **2006** *150mm x 150mm* 





#### Six Module Stave



Based on CDF stave design

- · Uses several CDF "spare parts"
- New bus cable (LBNL)
- New thick film hybrid (LBNL)
  - With 4 ABCD chips
- New serial powering PCB (RAL)

Two staves have been built

- One at LBNL
- · One at RAL

The interface PCB carries a connector

- · All other connections are wire bonds Picture shows stave assembled at RAL
- · "Module 2" left as hybrid for better comparison with single hybrid data

#### Six Module Stave at RAL: RESULTS









Results agree with expected ABCD performance!





# Thirty Module "Stave Test Vehicle"





A chain of 30 hybrids: Power input 123V, 0.8A

Thick Film Hybrid for 6 ABCD chips with integrated Serial Powering circuitry: requires ~0.75A at 4V

VOLTAGE DC VOLTS GENH150-5 0-150V---0-5A DC AMPS CURRENT

ALARM FINE PREVIA UVL FOLD REM/LOC OUT

HEWLETT E3614A 0-8V.0-8A

DC POWER SUPPLY

VOLTS.

AMPS

ADJUST

Carl Haber, LBNL



#### Interlude: Multi-Drop Signal Propagation

Whether we use Serial Powering or not, the desire to minimize the number of signal traces in a stave or supermodule design is clear.

The ABCD chip has five address lines:

- ·No more than 32 chips may be connected to one command bus
- •The 30 module stave has six command buses
- Each command bus serves five hybrids (30 chips in total)

For clock distribution, the thirty module stave design supports two options:

·Connect 10 hybrids to each of 3 clock buses, or all 30 to one clock bus

Command waveforms typically look better than clock waveforms (fewer drops):

- ·not always received and understood by ABCD
- · Phase adjustment can improve performance
- ·Things don't necessarily improve with larger signals (eg. M-LVDS)
- · Adding hybrids (or probes) lowers effective impedance (~40 ohm for 30 hybrids)

Beware of capacitive stubs when routing signals off external TTC tapes!

- ·Studies continues using the "Test Vehicle" with different drivers and configurations
- ·Test "bus cable" and "hybrids" being made to study effect of different stub lengths



#### Multi-drop Clock Distribution





Even for "poor" clock waveforms, the AC coupled LVDS receiver triggers and ABCD returns the expected clk/2 signal.



### Thirty Module Stave





Before the summer break, 7 modules and 2 hybrids had been mounted and tested on the stave.

- Leakage current is stable and no additional breakdown on stave
- Noise performance improves on stave, all are 900 electrons
- · Group of 5 modules share a common command line all read out together

Work to populate and test the stave continues in parallel with studies of communication issues using the "Stave Test Vehicle"



#### Thirty Module Stave: Preliminary Results











# Sanity Check: ABCD Noise Slope



### Coming soon: ABCN



New front end chip for ATLAS upgrade Silicon Strip module development programme

- · 250nm CMOS IBM
- · 2.5V digital / 2.2V analogue
- · binary architecture
  - 128 channels of preamplifier/shaper/ comparator
  - 25nS peaking time
- Additions to support novel powering schemes
  - On chip shunt regulators
  - On chip linear regulator for analogue supply

For details, see presentation given by Jan Kaplon in session A2

## Coming Soon: SPi



#### Serial Powering Interface

- Designed for generic SP use, but of great interest to ATLAS strip community
- Programmable shunt regulator (>1A)
- Two linear regulators
- Integrated Monitoring
- 7 AC-coupled LVDS comports

For details, see presentation by Marcel Trimpl in session B5 (next talk!)

# Serial Power Options with ABCN

#### Wladek Dabrowski scheme

- ·Use each ABCN's integrated shunt regulator
- · Use each ABCN's integrated power transistor(s)

# Power SR SR ABC-N ABC-N ABC-N ABC-N

#### Mitch Newcomer scheme

- ·Use one external shunt regulator
- ·Use each ABCN's integrated power transistor(s)



#### SPi - like scheme

- ·Use one external shunt regulator
- ·Use one external power transistor

Most similar to what has been used with ABCD...



# Baseline "Short Strip" Module Concept



- 10cm\*10cm detector
  - 4 sets of short strips
    - · S/N after irradiation
    - Occupancy
- · 2 hybrids
  - 20 FE ASICs each
- Bus cable under detector
  - Power, DCS, HV along one edge
  - Fast signals routed to the other edge

# Coming soon: 20 chip ABCN Hybrid



#### Ashley Greenall, University of Liverpool

- · Primary aim: test 20 ABCN together on one hybrid
- · Secondary aim: evaluation of various power options
- · Power fed from one end, control and command from the other
- · Can be used with any powering scheme, where necessary by addition of external PCBs
  - IP
  - · SP using discretes
  - · SP with SPi
  - · DC-DC
  - ...



#### Baseline Stave Concept



12 + 12 single sided modules back-to-back

An alternative supermodule design is also being studied

- Based around double sided short strip modules
- A suitable hybrid for this, using ABCN, is being produced by KEK
  - Wrap around design, so 40 chips / hybrid!

#### Related Activities

- · SP features in Pixel FE chip
  - see presentation given by Michael Karagounis in session A2
- Development of SP protection schemes
  - D Lynn, J Kierstad, BNL
  - Andreas Eyring, Bonn
- · Constant Current Source development
  - Jan Stastny, Prague AS

## Summary

#### Serial Powering has been shown to work well

- 6 and 30 module staves
- noise in agreement with FE chip noise slope

# Next generation ASICs for ATLAS strip modules with integrated SP features will arrive soon

- Should have even better performance!

#### Remaining system issues being addressed

- Custom current source
- Protection schemes

#### **Exciting Times for Serial Powering!**