GCT Muon and Quiet Bits System
Production and Status

Matt Stettler, Magnus Hansen - CERN
John Jones – Princeton University
Gregory Iles, Costas Foudas – Imperial College

9/2008
Overview

- New Trigger Processing system
- Originally required for GCT Muon and Quiet bits
 - New system required to meet this requirement
- Design for more general purpose system
 - Meets GCT requirements
 - Can be used for more generic purposes
 - Evolution of current GCT design
- Based on Commercial standard
 - Micro TCA
 - Modular telecommunication industry standard
 - Two components
 - Processing module (known as Matrix processor)
 - Full connectivity backplane
 - This review will focus on the processing module
Hardware “Family Tree”

- The Current GCT processing hardware is an evolution of several related successful designs at LANL and CERN
- 2004: Double PMC channelizer mezzine (LMA/LANL)
 - First use of 2Gb SERDES (external TLK series)
 - 8 full duplex links
 - Xilinx Virtex 2 FPGAs (2x 2V6000)
- 2005: Single PMC processing mezzine (LANL)
 - First use of embedded SERDES (Xilinx V2P40)
 - 4 full duplex links
 - High power density, link isolation
- 2006: GCT Leaf (CERN)
 - 32, 2Gb embedded SERDES receive channels (2x 2VP70)
 - First use of SNAP-12 optics
- 2007: CPCI MRM satellite signal processor (LANL)
 - Very large rad tolerant FPGAs (V4LX200, V4SX55)
 - 300MHz RAM interfaces (QDR SRAM), high density matched busses
 - Radiation tolerant, flight design
- 2008: Current Design – Matrix uTCA processing module (CERN/LANL)
 - Full serial design, 72+ 3.2Gb full duplex links
 - 500MHz RAM interfaces, 512MB DDR2 RAM
 - First use of large crosspoint SERDES switch
Primary System Design Goals

- Modular
 - Reasonably fine grained
 - Smaller circuit boards
 - Easier and less expensive to develop
 - Should scale well

- Well defined internal interfaces
 - Allows modules to be developed independently
 - Perhaps shared across projects
 - At least electrically compatible

- Flexible in both logic and interconnect
 - Retain flexibility of FPGAs
 - Add complementary data routing flexibility
 - Modify data flow without altering hardware
 - Give the ability of dynamic reconfiguration
GCT Muon and Quiet Bits System

- Secondary Function of the GCT
 - Receive data from 18 RCT crates
 - Reformat and pass on to GMT
- Details
 - 18 fiber inputs
 - 2.0Gbps from GCT source cards
 - Located in RCT racks
 - Standard 8b/10b encoding
 - Each fiber represents 40 degrees in phi, ½ barrel in eta
 - Serial outputs now routed to Opto GTI on GMT
 - 2.0 - 3.2Gbps to GMT
 - Exact details of interface still being finalized
 - Data organized in 120 degree phi, full barrel eta
Initial System

- Three processing modules
 - Known as “matrix processors”

- Custom or commercial backplane
 - Custom preferred for flexibility
 - Commercial usable for this application
 - Only processing module needed for this system

- “Dumb” power module for initial systems
 - Does not implement uTCA power management
 - Commercially available
 - Move toward full compliance as time permits
Processing module Block diagram

12 channel MTP receive

8 channel MTP transceiver

12 channel MTP transmit

Xilinx V5LX110T (16, 3.2Gbps MGTs)

Mindspeed M21141 72x72 crosspoint

POL supplies
- 3.3V switcher
- 1.0V switcher
- 2.5V linear

NXP LPC23xx uController

Enet

uTCA 21 3.2 Gbps Links

12V
Key Features of Processing Module

- **Xilinx Virtex 5LX110T/FX70T FPGA**
 - 16 low power MGTs, Superior logic density/speed
 - Board supports both 3.2 and 6.0 Gbps transcievers

- **Data I/O direct from fiber**
 - 16 channels full duplex @ 3.2 Gbps

- **Crosspoint routes to FPGA, backplane, and fiber**
 - 1:N data replication supported at wire speed
 - FPGA output data sent to backplane or fiber
 - Switches clocks as well as data
 - Dedicated low jitter clock tree provided for MGT reference
 - Clock output to backplane from crosspoint

- **Slow control via standard Ethernet**
 - Standard Ethernet protocols supported by NXP 2368
 - Connection provided for stand alone operation
Additional Features

• Module development is co-funded by Los Alamos
 – First use of related design in 4/09
• Additional RAM
 – 512MB DDR2 SDRAM added to module
 • Two banks of 128Mx16 @ >500MHz
 • Enables sophisticated SoC possibilities
 – Processor subsystems used in some MRM firmware
 – ~100 high speed (500 MHz), length matched traces
• Other Xilinx V5 features of interest
 – PCIExpress endpoint
 • Growth path for LANL CPCI systems
 • Currently implemented on test systems at Princeton
 – GigE MAC
 • Independent fast link to high level systems
 – Power PC (FX70T)
 – 6 Gbps transceivers (FX70T)
Design Considerations

- **Signal Integrity**
 - ~150 3.2 Gbps differential pairs
 - 72 full duplex pairs + clocks
 - 1.6GHz requirement (3.2GHz edge rate)
 - 3GHz desired to support latest Xilinx devices
 - 2 500MHz DDR2 RAM interfaces
 - 128Mx16 devices
 - Requires tightly matched traces
- **Power density**
 - Total power > 20W
 - Split between analog and digital power
 - Single 12V source requires intermediate regulators
 - Switcher to reduce voltage for linear regulators
- **Signal Density**
 - Small board size (75x180mm) limits physical isolation
Base Attenuation Test

- Hardware test using coax with equivalent cross section derating
 - Pasternack 0.047 inch semi rigid coax with a 11.3 mil diameter center conductor.
 - 35.5 mils circumference
 - Board t-lines are 3.5 x 0.7 mils or 8.4 mils around. Skin effect losses are therefore about 4.2 times higher per cm in the circuit board.
 - Coax tested is equivalent to 14.4 cm of length in our board
- Measured output risetime of 89 ps is not significant since it is quite a bit less than the 312 ps in one half of the period of 1.6 GHz. 10-20% pre-emphasis will be required to maintain full amplitude at the receiving end.
Test Board

- Realization that simulation is likely not adequate
 - Actual tolerances in PCB construction
 - Impedance control
 - Effect of various via technologies
 - Sizable effects at frequencies approaching 3GHz
- Test board designed to test margins
 - Various routing and via types
 - Designed to connect cleanly to test equipment
 - TDR, Network analyzer, 40 GHz scope
 - Doubles as instrument interface to Matrix processor
 - Allows signal injection and monitoring
 - Will be used to test backplane as well
- Design is complete, production is commencing
Advanced PCB Techniques

- Lower risk and increase performance
 - Standard process for current fabrication technology
 - Less demanding than multi laminate process used on leaf
 - Less risk than multi laminate high layer count used on MRM signal processor (improved yield)
- Micro Vias (Laser drilled)
 - Penetrate several layers (2-3)
 - Provide lowest inductance/best impedance match
 - Useful for both power and high speed signals
 - Can be stacked with both standard and micro vias to provide larger spans
 - Used in conjunction with “build up” board fabrication
- Via in pad
 - Micro via or drill via
 - Eliminates BGA escape pattern for higher performance
 - A must for very fine pitch BGAs (<1mm)
- Both technologies are being used in the design
 - Vendor (DDI) considers this the lowest risk approach
 - 12 layer board with 12 possible via spans (8 used)
- Preliminary gerbers sent to DDI early June for inspection
 - No manufacturing issues identified
Stackup

CLASS 2 BOARD

PROPOSED TO DDI ON: 05/15/2008

<table>
<thead>
<tr>
<th>Proposed AMC module stacks</th>
<th>Conventional</th>
<th>Micro-laser drill with B-Stage</th>
<th>Visual only</th>
<th>Micro-laser DDI WILL BE TAKING MY 1-3 AND STACK IT WITH THE 1-2 & 2-3 VIAS</th>
<th>Visual only</th>
<th>Micro-laser DDI WILL BE TAKING MY 1-6 AND STACK IT WITH THE 1-2 & 2-6 VIAS AND MY 7-12 AND STACKING IT WITH 11-12 & 7-11 VIA</th>
<th>conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 copper</td>
<td>0.0005</td>
<td>.004 hole 1-2 u .010 pad</td>
<td></td>
<td>.008 hole 1-3 u .016 pad</td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SURFACE</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 1 thru 6 .016 pad .018 pad</td>
<td>GND/PWR PLANE</td>
</tr>
<tr>
<td>2 copper</td>
<td>0.0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 1 thru 6 .016 pad .018 pad</td>
<td>PWR PLANE</td>
</tr>
<tr>
<td>3 copper</td>
<td>0.0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 1 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>4 copper</td>
<td>0.0014</td>
<td>1 thru 12</td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>5 copper</td>
<td>0.0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>6 copper</td>
<td>0.0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>7 copper</td>
<td>0.0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>8 copper</td>
<td>0.0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>9 copper</td>
<td>0.0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>10 copper</td>
<td>0.0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>11 copper</td>
<td>0.0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>dielectric</td>
<td>0.0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>Pair Layer (3.5 trace - 5.5 space)</td>
</tr>
<tr>
<td>12 copper</td>
<td>0.0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SIG----GND OVER PAIRS...OR PWR</td>
</tr>
<tr>
<td>thk</td>
<td>0.0596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.008 hole 2 thru 6 .016 pad .018 pad</td>
<td>SURFACE/GND</td>
</tr>
</tbody>
</table>

Note:
- Plus plating (0.01)x4 places on layers 2, 6, 7, 11.
Fabrication Process

- Top and bottom 4 layer sections
 - Layers 3-6 and 7-10
 - Conventional process with 8 mil drill through vias
 - Micro via 2-3 and 11-10
- Laminate top and bottom sections and drill 8 mil through vias
- Deposit layer 2 and 11
 - Micro via 2-3 and 10-11
 - Stack micro on conventional to obtain 2-6, 7-11
- Deposit layer 1 and 12
 - Micro via 1-2 and 12-11
 - Stack micro vias to obtain 1-3, 1-6, 12-10, 12-7
 - Conventional drill through vias
- Layers 3, 5, 8, and 10 are controlled impedance
 - 100 ohm differential traces
- Layers 1 and 12 “semi controlled”
 - 100 ohm differential traces with larger tolerance >10%
Component Layout
Component Layout (bottom)
Layer 3 Routing
Layer 10 Routing
Production Status

• Prototype circuit boards received
• In process of qualifying an assembly house
 – Outfit used in the past several years was acquired
 • New owners not interested in small runs
 – Several candidates
 • Vendor used for satellite work
 – Class 3 facility
 – Track record of good performance
 – Very expensive
 • New vendor recommended by board manufacturer (DDI)
 – Unknown quality
 – Very reasonably price (perhaps too reasonable)
 • Assembly requires fine pitch components and mixed Pb/RoHs
• All components in hand or commodity items
 – Assembly will commence as soon as vendor selected
Embedded software

- Microcontroller software
 - Basic communication
 - I2C, Ethernet
 - Debug support
- No significant progress
 - Disappointing progress by part time student
- Initial work is being taken over by Princeton
- Related project starting at Los Alamos
 - Take over from Princeton for common functions
 - Build on publicly available uTCA core functionality
 - Flight quality application required
 - Hopefully can create a common framework
 - Will allow collaboration on higher level software as well
Update on Backplane

• Layout has now started
 – Initial component placement done
 – Overall construction method chosen
 • Relatively thin PCB laminated to rigid stiffener board

• Production review scheduled for 2/09
 – Time to include results of testing
 • Matrix module
 • Test board margin tests
 – Likely will require more aggressive routing
 • Test board will define what structures will be permitted
 – Processing module design rules allow limited layer switching
 – Need to understand how far one can go and maintain performance

• Looking into design tool upgrade
 – Poor support of differential pair routing
 – Currently a hand optimized process – very time consuming