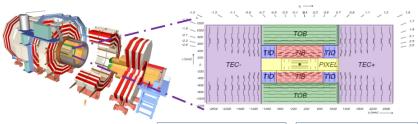
Studies of the assembled CMS tracker.

Pieter Everaerts and Kristian Hahn

Massachusetts Institute of Technology

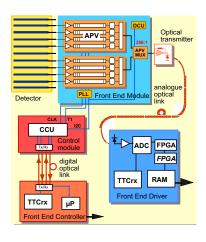
September 17, 2008


Summary

- Tracker Overview
- Wing Noise
- High-rate noise
- Noise phenomena during commissioning
- 5 Conclusions and acknowledgements

StripTracker Overview

5.4m x 2.4m
210m2 of active silicon
15148 modules
75000 APV FE chips
9.6M readout channels


Tracker Endcaps (TEC) 2x9 disks, 6400 modules Grouped into Petals

Tracker Outer Barrel (TOB) 6 layers, 5208 modules Grouped into Rods Tracker Inner Barrel (TIB) 4 layers, 2724 modules Grouped into Strings

Tracker Inner Disks (TID) 2x3 disks, 816 modules Grouped into Strings

Largest, most complicated tracker ever built. Very well-designed but the complexity requires extreme care and investigations.

Tracker Overview: DAQ chain

Control Path

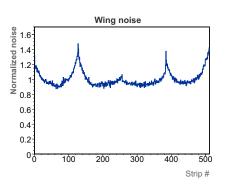
- FEC (Front-End-Controller): Clock/trigger distribution and FE control
- DOHM (Digital Opto-Hybrid Module): Optical-digital electrical conversion
- CCU (Communication and Control Unit): distribution of electrical control signals

Data Path

- FE (APV) does analogue pulse shaping, local storage, optical conversion/transmission
- FED (Front End Driver)
 Digitization, Data processing/Zero suppression, Clusterization, and transmission to upstream DAQ

Tracker Overview: TIF and Point 5

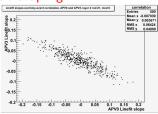
- Tracker subdetectors integrated at Tracker Integration Facility (TIF) Oct 06 till Jul 07
- During TIF, Tracker used in a 'Sector Test' with cosmics
 - 4.7 M cosmic triggers recorded
 - \approx 25 % of the StripTracker readout using final DAQ electronics
 - Operated at range of temperatures: between +15 and -15 C

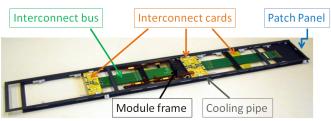


- Installation at Point 5 in December 07
 - Connections: December-March
 - Commissioning: Mid June - August
- First large-scale tests!

Wing noise: Phenomenon

- Tracker Outer Barrel (TOB) rods show unusual wing-like noise distribution.
- Large enough to affect tracker performance.
- Predominantly on module 6, layers 3 and 4 most affected.





Wing noise: Investigation

TIF investigations with the assembled TOB and testbench Rods

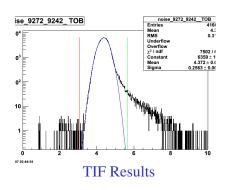
- Sheet of copper clad Kapton between interconnect bus and sensor.
 - Wings disappear, even when sheet is not grounded.
 - Ungrounded ⇒ Not electrical, but magnetic coupling.
- Similar sheets between sensor and hybrid or fiber frame ⇒ no effect.
- Pedestal slopes on first chip and last chip of module anti-correlated.

Wing noise: Investigation

- Cause of wing noise: connection between CCU on rod and DOHM
 - Currents runs on top and bottom of interconnect bus and returns through common ground in the middle.
 - DOHM receives control signals over optical link and converts them to diff. electrical signals sent over copper link.
 - Differential signals are never perfectly in balance, so imbalance current returned to DOHM via ground.
 - Return from control circuit board to power bus.
 - Then via power cables and control power cables back to DOHM.
 - Cooling pipes also provide an adequate path for noise current.
- Loop that creates signal voltage: alum. sense lead on top, HV bias plane on bottom and capacitance of reverse biased diodes at sides.
- Reverse bias increases \Rightarrow lower capacitance \Rightarrow smaller current.

Wing noise: Solution

- Solution: High quality ground at common point for cooling pipes, rod power and control power.
 - At cable patch panel mounted on large cryostat of CMS magnet.
 - Designed daughtercards to address the problem.

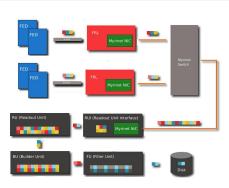


- RIB (Rod-In-a-Box):
 - TOB Rod installed at Point 5 before Tracker arrival
 - First test of wing noise in final P5 environment.
 - Daughtercard scheme proven to work.

Wing noise: Results assembled tracker

Before

After

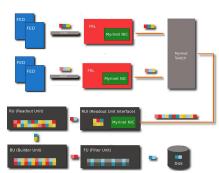


- Distributions look better:
 - High noise shoulder reduced by two orders of magnitude
 - 9 wingy modules left on 7 rods (out of 688 rods).
 - Point 5 results normalized (dead strips at low end)

High Rate Noise: DAQ read-out chain.

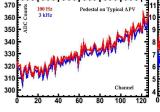
- Cosmics at TIF were low trigger rate, but CMS collisions will be at high trigger rate
- VME read-out only works for cosmics
- Needed extra hardware to test DAQ at collision rates
- No real signal, just noise and pedestals

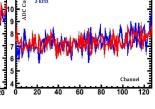
DAQ at 100 kHz very difficult with limited resources, not using full-scale CMS DAQ!

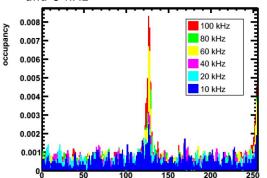

- Available bandwidth limited us to running ZeroSuppression only
 - ZeroSuppression: Only see fraction of data over specified threshold
 - Can only recognize the effect, difficult to investigate it.

High Rate Noise: DAQ Adaptations

DAQ at 100 kHz very difficult with limited resources, not using full-scale CMS DAQ!

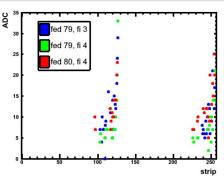

- Prescale at the PC input
 - First: no info about previous event
 - Modified to take consecutive events (determining event correlations)
- Extra Myrinet RUI to increase bandwidth
- Prescale also implemented in FED Firmware
 - Possible to run in VirginRaw-mode at high rate
 - VirginRaw: data from all channels
 - Measure high-rate pedestals and noise



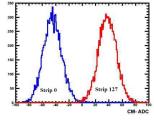

What is high-rate noise?

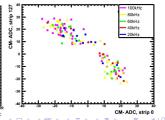
 Investigate noise vs. trigger rate

 At low rate, expected behavior, no differences between 100 Hz and 3 kHz

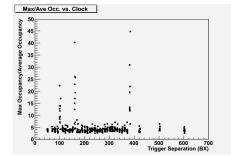


- At high rate (>30kHz) considerable growth in occupancy
- At edge strips of chip.


etrin

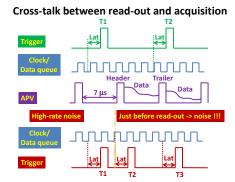

Characteristics of high-rate noise.

- On every APV simultaneously
- Not just some faulty components, really affects the whole tracker.


 Anti-correlation in strips 0 and 127 in common mode subtracted Pedestal

Characteristics of high-rate noise.

- Shielding has no impact at all.
- Fixed-frequency trigger shows no effect.
 - Check trigger hardware for pathological effects: none found
- Not correlated with pipeline location in APV.



- Discovered certain trigger intervals (T2-T1) with Spikes in Maximum Occupancy (380, 160 and 100)
- Animation at http: //www.mit.edu/~khahn/ interval/loopBX.gif
- Jumps up for all fibers

How is the high-rate noise generated?

Simultaneous look at trigger and data at the APV chip with a scope caused the breakthrough.

- Trigger arrives
- Queued data buffered for read-out (latency)
- DAQ occurs just before read-out
 ⇒ current rise due to read-out affects noise behaviour.
- ⇒ High Rate Noise

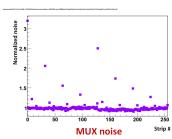
Confirmed by simulation

How to deal with high-rate noise in tracker?

- Tracking problematic with high-rate noise:
 - With abnormally high thresholds tracking still slow and lots of ghost tracks.

Possible solutions:

- Offline ID of high-rate noise (lose 1%)
- Change the trigger rules to reject events
 - High dead-time.
- Further down the DAQ chain: hardware veto for bunch-crossings that align with data-read-out
 - Not easy to implement in firmware and still dead-time (but less).
- Use anti-correlation to flag or reject events in FEDs
 - Rejection risky with non-optimized algorithm.
 - Difficult to implement in firmware.
 - Extra bit in FED header needed for flagging.



Commissioning Results: Still Discovering details

- At subpercent level!
- 71 modules out of 15148 show noise problems (0.5%)
- New phenomena:
 - MUXing problem on 18 modules.
 - Mysterious noise behaviour on 25 modules.
 - Show correlation with bad supply of power or control signals.

Conclusions

- In general tracker performs extremely well.
- Two problems found and understood:
 - Wing noise: in control path, solution found and implemented.
 - High Rate Noise: in read-out path, solution under development.
- Tracker Integration Facility showed its merit as a testbench.
 - Problems found and solved there.
 - In time to change final design slightly (daughtercards).
- Remain vigilant for future problems
 - Already seen some new syndromes during commissioning
 - What will happen with first pp collisions?
- Acknowledgments:
 - Wing Noise: F. Arteche, P. Harris, M. Johnson, J. Lamb, S. Tkaczyk, E. Zverev
 - High Rate Noise: K. Hahn, S. Nahn, K. Sung, S. Tkaczyk, M. Johnson, G. Hall, N. Cripps, J. Fulcher, M. Raymond, Q. Morrissey