

Upgrade of the Current ATLAS Pixel Detector

~2013: b-Layer upgrade

→ expected sensor performance degradation caused by radiation

→ possible x2-3 luminosity increase at ~2013 (new triplets & injection chain) b-layer insert at smaller radius 3.7cm

~2017: super-LHC upgrade

→ ~ x10 luminosity increase

FE-14 targets the b-Layer upgrade in ~2013 & the outer layers at SLHC

Motivation for FE-I4 Development

Why a redesign?

- smaller b-Layer radius & potential increased luminosity → higher hit rate
- → FE-I3 column-drain architecture not able to cope with x3 increased hit rate.
- → Smaller pixel size 50x400um → 50x250um (reduce pixel cross section)
- → New digital architecture for increased data volume
- Material reduction & improve of active area
- → bigger chip size 7.6x8mm → ~20.0x18.8mm
- → reduce size of peripheral chip area
- → increase cost efficiency
- Power consumption
- → analog design for reduced currents
- → decrease of digital activity by sharing digital circuits with several pixels
- → Reducing cable losses by new powering scheme
- New sensor technologies
- → Adapt to several sensor types (3D, diamond, planar) with different detector cap. & leak.

Why a new technology?

- Higher integration density for digital circuits
- technology? Increased radiation tolerance of 130nm tech. with respect to 250nm tech.

Collaboration Effort

institutes involved:

Bonn, CPPM, Genova, LBNL, Nikhef

core blocks

- analog readout electronics
- new concept of digital pixel logic
- readout scheme of double column

peripheric blocks

- bandgap reference & DACs → biasing & calibration
- voltage regulators → power management
- LVDS TX/RX → fast off-chip communication
- slow control

collaborative tools

- weekly phone meeting
- VCS shared design database based on ClioSoft tool

Analog Readout Chain

- two-stage architecture optimized for low power, low noise and fast rise time
- additional gain Cc/Cf2~ 6
- more flexibility on choice of Cf1
- charge collection less dependent on detector capacitor
 - decoupled from preamplifier DC potential shift caused by leakage
- Local DACs for tuning feedback $_{50\,\mu m}$ current and global threshold
 - charge injection circuitry

Preamplifier Feedback & Leakage Compensation

2-nd Stage Amplifier & Comparator

Digital Readout Architecture

FE-I3

Both FE readout based on double column structure

FE-I4

Digital Part

0000 000 **Shared Digital Part**

- All pixel hits are sent to the EoC buffer outside the active area at the bottom of the chip
- A hit pixel is blocked until the double column bus is free and the data has been sent out
- Every Pixel has its own digital circuitry

- 99% of hits will not be triggered for off-chip transmission → no need to move hits to EoC!
- → Storage of hits in buffers at pixel level
- → Local synchronization to trigger latency
- Pixels are grouped together to logic units. Logic units are grouped to buffer regions

Simulation of Digital Architecture

Two sources of inefficiencies are identified in the FE-14 architecture

• Pile-Up Inefficiency: proportional to logic unit (pixel) area & mean ToT.

Handle: reduce cross-section (back to single pixel or truncation); aggressive return to baseline (decrease ToT)

Local Buffer Overflow Inefficiency:

Handle: increase size of Logic Unit / Local Buffer "averaging out effect" increase # of cells per Local Buffer.

FE-I4 Local Buffer overflow ineff. as function of number of buffer cells (3xLHC)

FE-I4 inefficiency as function of hit rate

At 2-3 times LHC luminosity and r~3.7cm, FE-I4 inefficiencies acceptable

Implementation at RTL & gate level (+ integration of the 2 simul. framework) is actively going on.

LVDS Driver

- Standard LVDS architecture for 320MHz clock rate and adapted to low supply voltage 1.5-1.2V
- Current is routed to/from the output by four switches M3-M6
- Common-mode voltage is measured by a resistive divider and controlled by a commonmode feedback circuit
- Output current is switchable between 0.6 -3mA

Boni et al., IEEE JSSC VOL. 36 NO. 4, 2001

LVDS Driver with Tristate Option

- Might be beneficial for multiplexing the output signal of several FE chips through one transmission line at the outer layers
- Switching Transistors M3 M6 are steered by seperate signals
- All switches can be left open at the same time giving a high impedance state at the LVDS driver output
- Switching signals are set by additional tristate logic

Tristate Logic

DI	EN	N	Nn	Р	Pn	Out
0	0	0	0	1	1	hZ
1	0	0	0	1	1	hZ
0	1	0	1	0	1	0
1	1	1	0	1	0	1

LVDS Receiver

- parallel PMOS/NMOS comparator input stages allow operation in a wide range of common-mode voltages
- cross coupled positive feedback structure allows introduction of hysteresis
- second stage sums singals from both input stage and converts them to a CMOS output signal

Tyhach et al., A 90-nm FPGA I/O Buffer Design With 1.6-Gb/s Data Rate for Source-Synchronous System and 300-MHz Clock Rate for External Memory Interface, IEEE JSSC, Sept. 2005

LVDS Chip Layout & Measurements

UMC 130nm

1.5mm

• 21-Jul-2007: first test chip submitted to UMC 130nm via Europractice mini-asic run → real hardware test of chosen architecture for use in FE-14

• 24-Mar-2008: 4 channel LVDS transceiver chip submitted to IBM 130nm (LM) via CERN → for use in a SEU test setup

- → characterization of new cables and flex types
- 15-Sep-2008: LVDS driver with tristate option submitted to IBM130nm (DM) via MOSIS

IBM 130nm

Preliminary Measurements on the IBM 130nm Transceiver Chip

with differential probe and 100 Ohm on board termination @ 1.2V supply

Powering Options Under Consideration

Low Drop Out Regulator

LDO useful for both powering schemes

Error Amplifier

Specification

- LDO regulator for Vin=1.6V, Vout=1.5-1.2V minimun drop out voltage 100mV
- Iload=500mA
- Line Regulation:

$$\frac{\Delta V_{out}}{\Delta V_{in}} = \frac{g_{mpt} r_{opt}}{A\beta} = \frac{5mV}{100mV} = \frac{1}{20}$$

• Load Regulation:

$$\frac{\Delta Vout}{\Delta I_{load}} = \frac{r_{opt}}{1 + A\beta} = \frac{5mV}{150mA} = 33m\Omega$$

- 2 stage error amplifier with fully-differential first stage and common-mode feedback biasing
- Rail-to-rail Class-AB output
- No need for transistors M4 & M5 to be gate-drain connected which would reduce the output impedance and the gain of the first stage

LDO Stabilization by Zero Cell

- Zero is introduced in the open loop transfer function by a frequency dependent voltage controlled current source
- Less peaking of Vout in comparison with compensation by R_{ESR}of Cout
- A frequency dependent current is flowing through the capacitor at the source of M13 which is mirrored to the output.
- New Zero Cell based on transimpedance amplifier input stage
- AC coupled input → No need for source follower -> No current mirror
- Only pole: Input impedance at the source of M1 → High bandwidth

submitted to IBM 130nm (DM) 15-Sep-2008 via MOSIS

2x DC/DC switched capacitor based conversion

- On chip four transistor switching scheme using 3.3V thick gate oxide devices
- To avoid shorts between Vin & Vout or Vout & GND three nonoverlapping clocks are used

Measurement with Cpump=0.22uF (0201 package)

Rout includes 25mu long wire bond resistances single in- & output and cap bonds due to small pads

Good radiation performance of 3.3V ELT NMOS transistor is crucial for successful operation

First irrradiation results are very encouraging (see spare slide)

New Shunt Concept Basic Ideas

- Shunt regulator generates constant output voltage out of a current supply.
- ullet Parrallel placed shunt regulatros need an input resistor R_{slope} for safe operation
- Resistor R_{slope} reduces the slope of the Iin=f(Vout) characteristic
- → Mismatch has less influence on current distribution and device break down is avoided
- Rslope has no regulation contribution but burns power
- → Replacement of Rslope by a regulated "resistor"
- Shunt regulator was meant to be used in combination with a LDO
- → Change chain order and place LDO before the shunt
- The LDO PMOS power transistor becomes the regulated "resistor" Rslope
- •The shunt transistor becomes part of the LDO load

LDO Regulator with Shunt Transistor

Simplified Schematic

- "Shunt-LDO" regulators having completely different output voltages can be placed in parallel without any problem regarding mismatch & shunt current distribution
- Resistor R3 mismatch will lead to some variation of shunt current but will not destroy the regulator
- "Shunt-LDO" can cope with an increased supply current if one FE-I4 does not contribute to shunt current e.g. disconnected wirebond → ref current goes up
- Can be used as an ordinary LDO when shunt is disabled

- Combination of LDO and shunt transistor
- M4 shunts the current not drawn by the load
- Fraction of M1 current is mirrored & drained into M5
- Amplifier A2 & M3 improve mirroring accuracy
- Ref. current defined by resistor R3 & drained into M6
- Comparison of M5 and ref. current leads to constant current flow in M1

Ref. current depends on voltage drop V_{lin} - V_{out} which again depends on supply current lin

submitted to IBM 130nm (DM) 15-Sep-2008 via MOSIS

Conclusion / Plans

- New Pixel Front-End IC targeting both b-layer upgrade and the outer layers of sLHC is being developed
- The prototype FE-I4-P1, LVDS Transceiver & SEU Test Chip returned from production

Analog Pixel Array	LDO Regulator	
Current Reference	LVDS TX/RX	
DC/DC Charge Pump	Control Block	
Cap. Measurement	SEU Test Structure	

- Functional test and Pre & Post irradiation characterization is beeing performed
- Digital architecture of FE-I4 is currently being defined. Implementation at RTL level has started.
- Additional blocks to study new concepts on real hardware have been developed & submitted LDO with shunt ability "SHULDO", LDO with enhanced "Zero Cell" compensation, LVDS tristate driver

Design of a full-scale layout is foreseen for the year 2009

SPARE SLIDE: FE-I4 Specification

Dimat ains	E0 250	1 2
Pixel size	50 x 250	μm²
DC leakage current tolerance	100	nA
Pixel array size	$\geq 64 \times 320$	Col x Row
Normal pixel input capacitance range	300-500	fF
Long pixel input capacitance range	450-700	fF
In-time threshold with 20ns gate (400pF)*	4000	e
Hit-trigger association resolution	25	ns
Same pixel two-hit discrimination (time)	400	ns
Single channel ENC sigma (400fF)	300	e
Tuned threshold dispersion (max)	100	e
Charge resolution	4	bits
ADC method	TOT	
Operating voltage range	1.2 - 1.5	V
Total analog supply current @400fF	10	μA / pixel
Radiation tolerance (specs met at this dose)	200	MRad
Average hit rate	200	MHz/cm ²
Trigger latency (max)	3.2	μs
Single chip data output rate	160	Mb/s
Maximum trigger rate	200	KHz
Total digital supply current @ 100KHz	10	μA / pixel

SPARE SLIDE: Preliminary irradiation results

First measurement of enclosed geometry 3.3V transistors in 0.13um process

0 dose curves look funny due to some parasitic turning on. Transistor being measured is not isolated. Somehow the radiation has cured this parasitic.

3.3V NMOS ELT

SPARE SLIDE: Chip Yield

Defects in the pixel array should lead by redundant design predominantly to the loss of a single pixel or region.

A few dead pixels or regions can be tolerated for physics grade chips

Even with some dead pixels its like having 100% yield

Assuming 15% of the pixel area contains very critical circuits meaning defects there would lead to the loss of more than one pixel or region (e.g. whole column)

We get Y = 78% for array A = 20mm x 17mm

Bottom of Chip is more critical:

Yield =
$$[(1-e^{-DA})/DA]^2$$
, A = circuit area (~independent of array size)
D = defect density ~ 0.5 / sq. cm. (from MOSIS)
for A=2mm x 20mm, Yield = 82%

Combined yield = 64% for 80x336 chip, 68% for 64x320 chip

The ATLAS Pixel Upgrade FE-I4 collaboration

Bonn - David Arutinov, Marlon Barbero, Tomasz Hemperek, Michael Karagounis

CPPM - Denis Fougeron, Moshine Menouni

Genova - Roberto Beccherle, Giovanni Darbo

LBNL - Robert Ely, Maurice Garcia-Sciveres, Dario Gnani, Abderrezak Mekkaoui

Nikhef - Ruud Kluit, Jan David Schipper

