The Detector Control Power System of the Monitored Drift Tubes of the ATLAS Experiment

Theodoros Alexopoulos NTU Athens

TWEPP08
September 17, 2008
Naxos, Greece

Outline

Detector Control System (DCS)

- Introductory Remarks about DCS
- MDT in ATLAS Experiment
- Structure of DCS
- Power Systems for MDT
- Summary

DCS - Introduction

Detector Control Systems

- Systems to control (via computers) the operation of a HEP experiment
- Appeared in 1980's
- Increasing Complexity of the Experiments
- Control of a large amount of parameters
- Check of the smooth operation of the experiment

Characteristics

- Operators don't need to be sub-detector experts
- Operation procedures become very easy
- Automatic Error Recovery procedures can be implemented

Standard DCS Model (Client-Server Model)

OPI: Operator Interface , IOC: Input/Output Controller, IOS: Input/Output Servers

What does DCS involve?

 Control, Configuration, Readout, Monitoring of Hardware devices (but not readout of event data)

- Monitoring of external systems
 (LHC, Safety, Electrical, Gas, etc)
- Communication with DAQ
- Logging of data, status, storage in database
- Implementation of Finite State Machine behavior
- Partitioning

DCS Architecture

Supervisory Control And Data Acquisition System: PVSS

Commercial product PVSSII from ETM, Austria LHC wide decision

- Can be distributed over many stations
- Flexible and open architecture
- Basic functions for automatisation
- Standardized interface to the hardware
- Application programming interfaces

What is OPC?

- OPC defines a standard to interface programs (SCADA, HMI) and hardware devices in a control system.
- OPC provides a multi-vendor interoperability.

No more specific drivers needed for each client

- OPC (OLE for Process Control) is based on the MS object model COM/DCOM (Component Object Model).
- OPC includes 3 interface specifications:
 - **⇒** Data Access
 - ⇒ Alarm and Event Handling
 - ⇒ Historical Data Access

LHC Experiments

A Toroidal LHC ApparatuS

ATLAS

44m

Diameter: 25 m

Length: 44 m

Weight: 7 kT

~100 M electronic chs

1150 MDT chambers

354 384 Tubes

214 Tonnes

725 m³ Gas Volume

5520 m² Chamber Area

Semiconductor tracker

Muon Spectrometer

Two Basic parts
 Barrel και EndCap:

Barrel: 3 cylinders (inner-middle-outer)

EndCap: 3 disks

Chambers: MDT, CSC, RPC, TGC

1150 MDT chambers 354 384 Tubes 214 Tones 725 m³ Gas Volume 5520 m³ Chamber Area

Cross plate

Multilayer
In-plane alignment
Longitudinal beam

Finite States Machine (FSM)

• <u>Definition:</u> A finite state machine (FSM) or finite state automaton or simply a **state machine** is a model of behavior composed of a finite number of states, transitions between those states and actions.

Operator InterfaceFinite State Machine (FSM) Architecture

- The FSM (part of the JCOP Framework) is the main tool for the implementation of the full control hierarchy in ATLAS DCS
- It is envisaged that the shift operators will operate DCS ONLY through the Operator Interface (based on the FSM) and the PVSS alarm screen

JCOP: Joint Controls Project

Operator Interface FSM (Partitioning)

Operator Interface FSM (STATE and STATUS)

Messages via a double Information Path – STATE & STATUS

- STATE defines the operational mode of the system (ON, OFF, etc)
- STATUS defines how well the system is working (OK, WARNING, ALARM, FATAL)
- Two parallel information paths. E.g. HV system is in RAMPING_UP state (which takes several minutes) and an error triggers. The error is propagated through the STATUS while keeping the same STATE

ATLAS DCS at First Beam Events

CAEN Power Supplies modules

Right order PPM benefit

Branch Controllers A1676

Crates

Boards LV: A3025 & A3016 HV: A3540P

Structure of MDT PS

PS OPC server

- Run a single OPC server on PSI pc (scattered system)
- PS2 Barrel System
- PS3 EndCap System

PVSS datapoints

- Datapoints that correspond to hardware modules (channels, boards, crates, branch controllers, mainframe)
- Datapoints that correspond to the chambers
- Internal datapoints
 - ✓ for the FSM
 - ✓ for the OPC Server (communication with hardware)
 - √ for the RDB manager (archiving of datapoint elements)

Alarms are activated for the datapoints and their elements

FSM trees

One FSM tree is implemented for each partition

 Hierarchy is set for the parts of the system (nodes and their children)

Commands and states propagate correctly

Present status of PS system

Barrel

All chambers are incorporated in the system having LV modules

HV modules for all chambers in all sectors

Endcaps

Both Big Wheels and Small Wheels (one for each side) are incorporated to the system having both LV and HV modules

Summary

ATLAS PS MDT DCS is a Robust System

Is being used…

Delivered & Tested on Time

Members of ATLAS NTU-Athens DCS group:

T. Alexopoulos, T. Argyropoulos, E. Gazis,

E. Mountricha, C. Tsarouchas, G. Tsipolitis

Ex-members

M. Bachtis, A. Iliopoulos