Transmission-Line Readout with Good Time and Space Resolution for Large-Area MCP-PMTs

Fukun Tang (UChicago)

C. Ertley, H. Frisch, J-F. Genat, Tyler Natoli (UChicago)
J. Anderson, K. Byrum, G. Drake, E. May (ANL)
Greg Sellberg (FNAL)

- Introduction
- Characteristics of MCP-PMT output signals
- Readout techniques for picoseconds timing measurements
- Transmission-line readout design and simulations
- 40Gsps fast sampling chip design
- Summary & plan

TWEPP 2008, Naxos, Greece, September 15-19 2008

Introduction: Applications of Time-of-Flight for

Introduction: Planacon Wice-Pivil Tube &

Anada Array

MCP signals

- Measured (beam-tests):
- Rise-time: 380ps
- →bw=1.75GHz
- 25mm pores

Simulation:

- Rise time 200ps (6mm pores)
- Time spread: +/- 125ps, random
- Amplitude spread: 14%, normal

MCP signals (beam-test)

As measured at Fermilab (beam-test, 10-50 PEs)

25 mm pores
Two stages MCP
Gain ~10⁶

I (1PE) = dQ/dt ~ 1.6x10⁻¹⁹ x 5 x10⁵ / 250 ps = 320 uA Expect: 16 mV @ 50 Ω

Fast Timing Electronics

Current techniques:

- Leading edge + TDC/ADC
- Constant fraction + TDC/ADC
- Zero-crossing + TDC
- Double / multiple thresholds + TDC/ADC
- Pulse sampling and reconstruction

The most favorable method is **sampling**, particularly in the case of few Photo-electrons.

Samples as effective for timing as steep signal slope and large signal/noise ratio

Use today existing sampling chips in first step: Hawaii, PSI, Saclay/Orsay (sampling rate @2-5 GHz, 10-13 bits)

- Derive accurate time and charge using digital signal processing
- Resolve pile-up, transmission line readout ambiguities

Fast timing simulations

Assume 1.5 GHz analog bandwidth:

100 samples taken at 10-40 Gsps allow reconstructing time to a few picoseconds and charge to one per cent.

- Better time resolution compared to CFD particularly at low PEs,
- Records the full pulse information

Proposed Transmission —line and Fast Sampling Readout for Planacon MCP-PMT

Why use transmission-line readout?

Advantages of transmission-line and fast sampling techniques:

- Use many fewer readout channels (1024 down to 64 channels)
- Readout timing, position and energy information
- Good transmission-line bandwidth (up to 3.5GHz)

Principle of Transmission-line Anode Readout

Timing:
$$t_0 = \frac{t_1 + t_2}{2}$$
 (Sampling over the peak)
$$x_i = \frac{t_1 - t_2}{t_1 + t_2}$$
 Energy:
$$E = q_1 + q_2$$
 (Full waveform sampling)

Proposed Transmission-line Anode Board

10

Simulations Based on Commercial 2'x2' 1024-Anode

Tuha

- (1) Elastomer
- (2) Low-T solder (indium)
- (3) Conductive Epoxy
- (4) Ultimately capacitive coupling

1 2 3 4 5 6 NACSOSH 7 THE

Layout of Prototype Transmission-line Readout Board

Board Size: 130x60mm

Board Thickness:

Trace length: 5.36', 4.83', 3.97'

Bandwidth Analysis for Transmission-line

Readout

Simplified model with the transmission-line readout board attached to MCP-PMT:

Equal distributed 32 $C_L=100f$ along 2-inch line, It reduces impedance to Zo', However, it also reduced the BW.

$$Zo' = \sqrt{\frac{L}{C + \alpha C_L}}$$

$$Tr = 2.2\tau = 2.2 \frac{Z_0}{2} \alpha C_L \approx 100 \, ps$$

$$\alpha = \frac{nC_L}{Length}$$

$$\alpha C_L = 1.6 \, p$$

$$BW \approx 3.5 \, GHz$$

System Modeling for Transmission-line Readout

Outputs on Each End of Transmission-line with Stub Anodes (hit at pad-5)

Date: Monday Mar. 3, 2008 Time: 16:50:21 Show Latest Waveform = YES, Show Previous Waveform = YES

Outputs on Each End of Transmission-line with Stub Anodes (hit at pad-16)

Outputs on Each End of Transmission-line without Stub Anodes (hit at the same position as pad-16)

Simulation with Transmission-Line Anode up to 48-

Simulation Goal:

To understand analog signal bandwidth vs. the length of transmission-line for MCP anode design.

System Setup:

The simulation model is extracted from a board layout. The transmission-line impedance Z=50 ohms, the length is 48-inch with 4824 tapped anodes which induce 100f capacitance each.

Input Force:

A step voltage input force with a rise time of 100ps, an amplitude of 1.4Vexcites the line at the point 1-inch from the left end.

Outputs:

Comparing the rise time between both ends of the line.

Responses on each end of 48-inch transmissionline (Hit at the position 1-ch to the left)

Conceptual Design of Transmission-line and Fast Sampling Readout Electronics

Only 64-ch readout electronics needed!

Fast sampling chip at UChicago

- Technology: IBM 8RF DM 130nm CMOS design kit from CERN
- Key numbers of UChicago Fast Sampling Chip
 - -- 40 GHz sampling
 - -- 1-2 GHz analog bandwidth
 - -- 8 -10 bit ADCs
 - -- Self/Global trigger
 - -- Time Stamping
 - -- Readout protocols
- Work in Progress:
 - Unity gain input buffer design(1-2GHz BW)
 - Analog bandwidth is 1.6 GHz (-3dB) using current mode amplifier has been achieved (pre-layout).

To be improved:

Tuning input impedance of 200 Ω to 50 Ω with the IBM130nm CMOS DM (analog RF) process when available.

- --Extend analog bandwidth as far as possible, if input buffer can not meet the requirement.
- -Sampling timing generator design
- -Sampling cells and ADCs: Experience from Orsay/Saclay, Hawaii and PSI.

Summary

Advantages:

- Use many fewer readout electronics channels
- Readout timing, position and energy information
- Good signal bandwidth
- Easy to match impedance all the way to the chip input

Plans (short and long term)

- Prototyping transmission-line readout with laser stand and 40Gsps scope (in few weeks)
- Transmission-line readout with two LAB2 or two DRS4 Chips (possibly 2x interleaving?) (in few months)
- Development of 40Gsps sampling chip for large scale detectors
 ---2-ch demonstration chip with IBM 8RF 0.13u CMOS (year 1)
 --- 32/64-ch chip (year 2)
- Built-in transmission-line anode design and simulation (need to work with tube designers)