

STUDY OF RADIATION HARDNESS OF PIN DIODES FOR ATLAS PIXEL DETECTOR

B. Abi, F. Rizatdinova (OSU),

P. Skubic (OU),

K.K. Gan, D.S. Smith (Ohio State U.)

Outline

- Motivations
- Results of TID test
- Irradiation tests with 200 MeV protons
- Irradiation test with 24 GeV protons
- Conclusions

Motivation

- LHC is expected to be upgraded by 2016 current pixel detectors should be upgraded as well to address the higher radiation environment of the SLHC
- ATLAS pixel detector employs optical readout, one of the components of the optical link is PiN diode
- The total integrated luminosity of the SLHC is assumed to be 3000 fb⁻¹
- That corresponds to the fluences:

```
Si: 1.5 x 10<sup>15</sup> 1-MeV n<sub>eq</sub>/cm<sup>2</sup>
2.6 x 10<sup>15</sup> p/cm<sup>2</sup> for 24 GeV protons
1.2 x 10<sup>15</sup> p/cm<sup>2</sup> for 200 MeV protons
We did 1.4 x 10<sup>15</sup> p/cm<sup>2</sup> 20 % more=80Mrad
```

GaAs: $8.2 \times 10^{15} \text{ 1-MeV n}_{eq}/\text{cm}^2$ $1.6 \times 10^{15} \text{ p/cm}^2 \text{ for 24 GeV protons}$ $1.02 \times 10^{15} \text{ p/cm}^2 \text{ for 200 MeV protons}$ we did $1.4 \times 10^{15} \text{ p/cm}^2 40\% \text{ more}$

Goals

- Find fast PiN candidates which will survive after expected irradiation of SLHC dose
- Develop practical test stands and methods to study characteristics and radiation hardness and reliability of PiNs
- Investigate a behavior of the standard Si and GaAs PINs that are on the market as a function of irradiation dose
 - Response
 - Lifetime

Selected PiN diodes in our tests

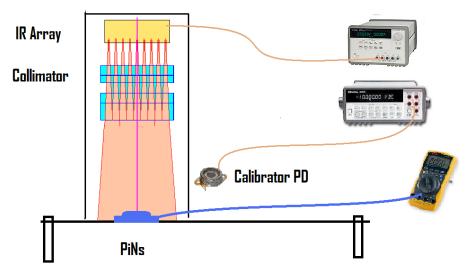
- Performed study of the market of the available PiNs (looked at the Hamamatsu, Truelight, Finisar, ULM, ...); Have chosen following devices:
- □ Si PiN diodes (sinlge devices):
 - S9055-01 & S5973-01

(In case of success have an agreement that Hamamatsu will produce arrays for us)

- □ GaAs PiN diode, G8522-XX
 - There are 3 varieties of this PiN: G8522-01, 02, 03 that differ in the size of active area and frequency excellent opportunity to study the radiation hardness vs PiN frequency
- □ GaAsP PiN array G8921-01

Characteristics of single PiN diodes

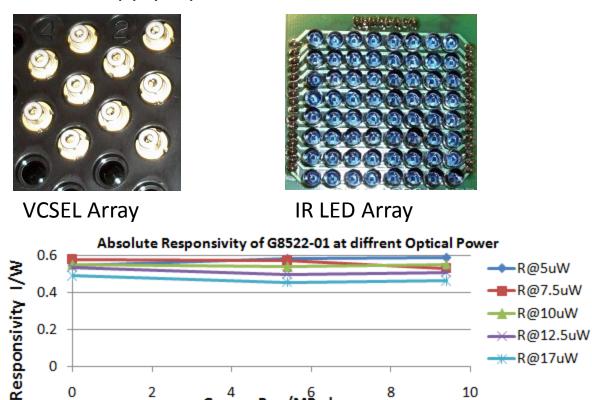
PiN	\$9055-01 \$5973-03	G8921-01	G8522-01	G8522-02	G8522-03
Peak Wavelength	700 nm	850 nm	850 nm	850 nm	850 nm
Photo Sensitivity @850nm	0.25 A/W 0.37 A/W	0.5 A/W	0.5 A/W	0.5 A/W	0.5 A/W
Dark Current Ave.	1 pA	2 pA	1 pA	8 pA	20 pA
Cut-off Frequency	2 GHz 1.5 GHz	2.5 GHz	3 GHz	1.9 GHz	1.5 GHz
Terminal Capacitance	0.5 pF 1.6 pF	0.5 pF	0.3 pF	0.45 pF	0.8 pF
Active Area(diameter)	100 μm 120 μm	60 µm	40 µm	80 µm	120 µm
Voltage bias (V)	5	2	2	2	2


Performed tests

- TID test at BNL (total dose 10Mrad) in April 2008
- Two tests at IUCF in May and June
 - 200 MeV protons
 - □ First test at May up to 40 Mrad, second test in June 2008 with another 40 Mrad
 - Used the same setup with the same PiN diodes in June.
 - Total dose is 80 Mrad , total fluence $\sim 1.4 \times 10^{15} \text{ p/cm}^2(\text{Si})$
- Test of the same types of PiN diodes and of GaAs arrays at CERN T7
 - □ 24 GeV protons, total fluence is 1.5×10^{15} p/cm² for GaAS and 2.6×10^{15} p/cm² for Si devices

TID Test at BNL

- Cobalt-60 (⁶⁰Co) Source 200kRad/h
 - Responsivity was measured offline at 0 Mrad, 5.6 Mrad and 9.6 Mrad
 - Tested three versions of G8255 and one S9055-01 diodes with caps off. PiNs have been biased.

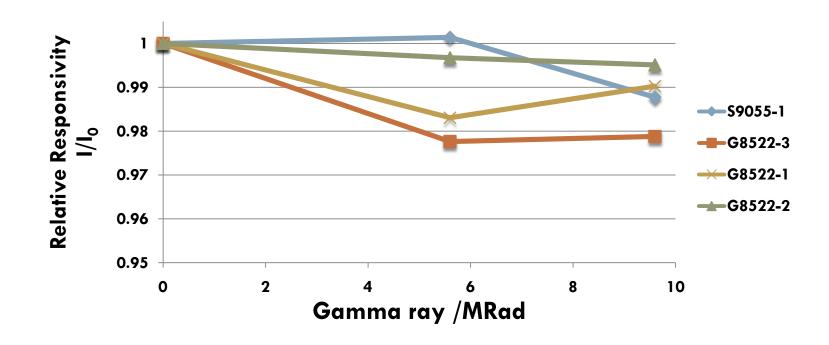


- Used IR LEDs to illuminate it
- Uniform optical power over the testing area
- Controlled the optical power during the experiment.

TID setup

2

IR Challenging To have an optical power of 100-400μW over 100μm area we have to supply a power of 4-7 W/cm²


Gamma Ray /MRad

Babak Abi (Oklahoma State University)

10

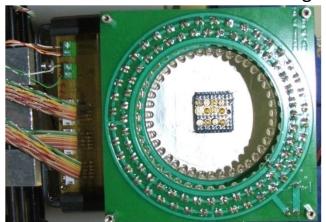
TID results

Conclusion:

No degradation has been observed for any type of tested PiNs in TID test with 10 Mrad

OpenAir IR Source PiN Test-Stand

Complete Total Setup ready to Run

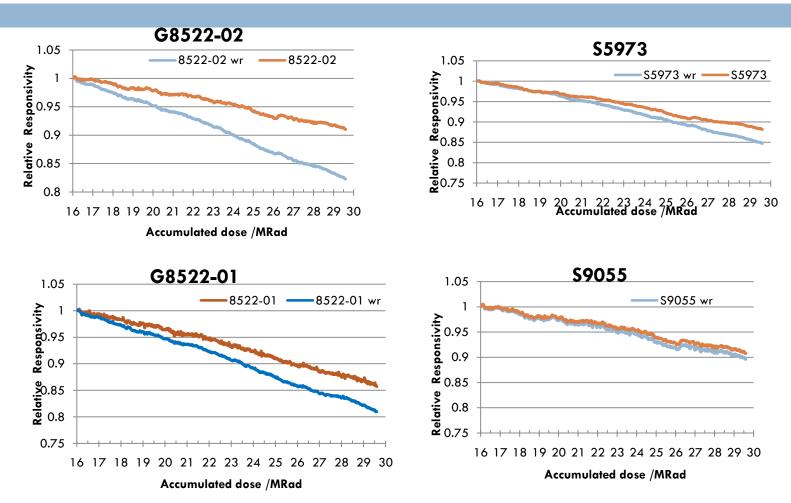

Test-Stand at Beam Position

PiNs Mounted at Daughter Board

Motherboard with controlled IR ring source

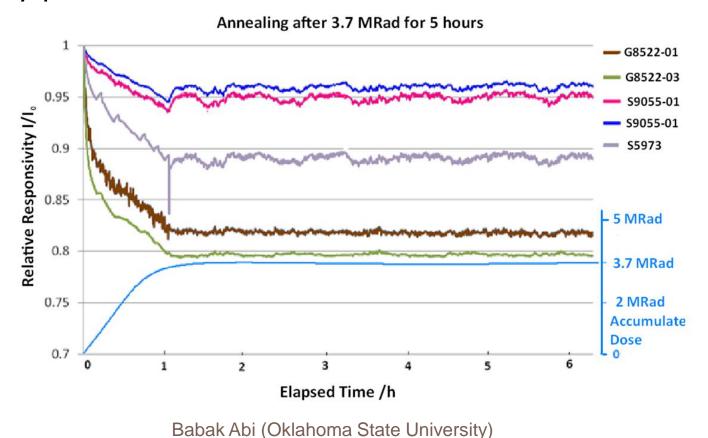
Babak Abi (Oklahoma State University)

Degradation of Optical resin

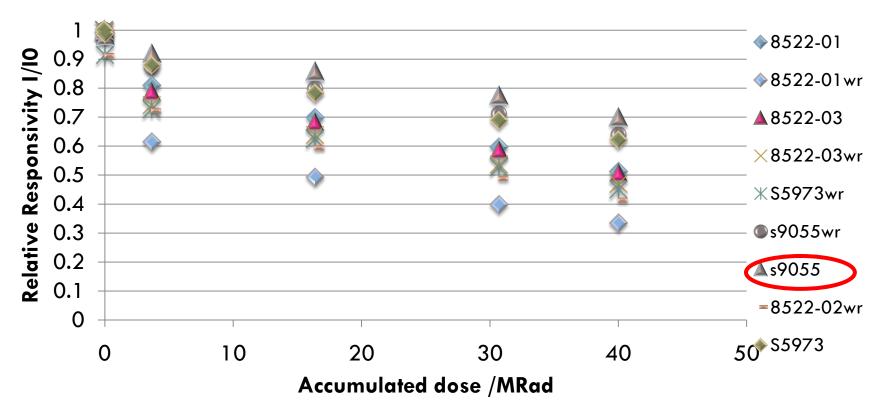

Before Irradiation

After 6.8x10¹⁴ P/cm² 40Mrad

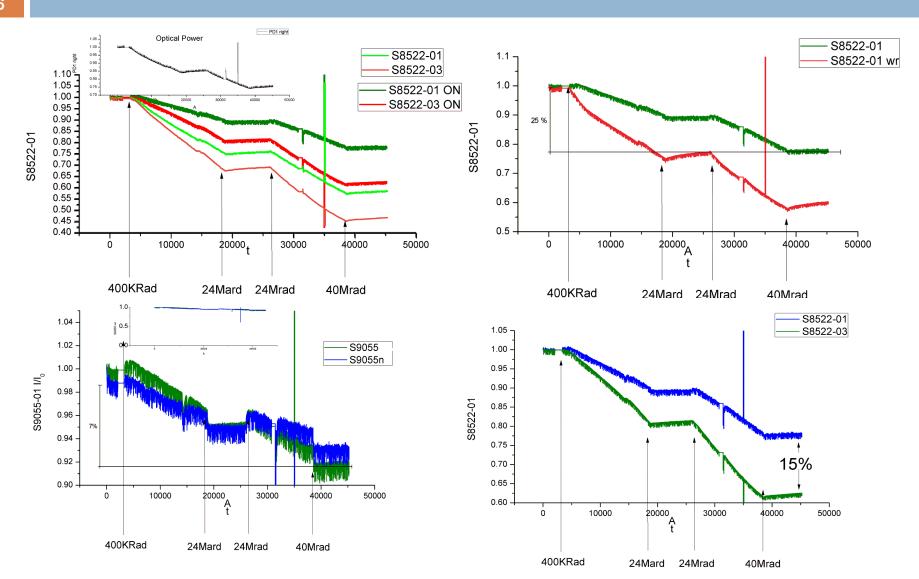
EPOTEK 354 optical epoxy (already widely used by the HEP community) is a good choice for device/wirebond protection


Responsivity of PiNs with and without Optical Epoxy

The degradation due to the presence of Optical Epoxy is clear, but not dramatic


Annealing effect

After 3.7 Mrad we had no beam for 5 hours. Annealing is not very prominent.



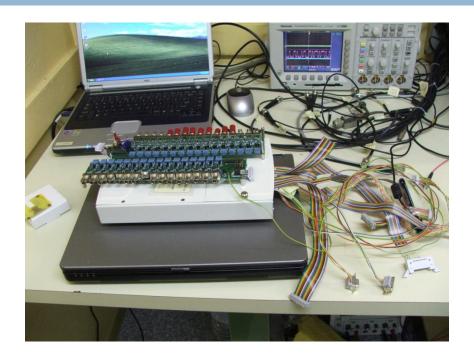
Responsivity vs dose up to 40 Mrad

- □ S9055-1 sounds excellent
- There is no relation between size of active are and radiation hardness of PiN

IUCF 2nd Run, Responsivity vs time (from 40 to 80 Mrad, Comparative Plots)

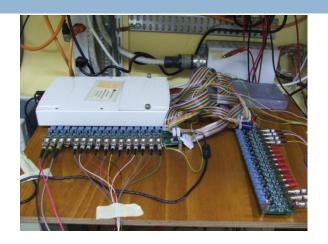
Total Responsivity degradation for 200MeV

□ Final results for 200MeV

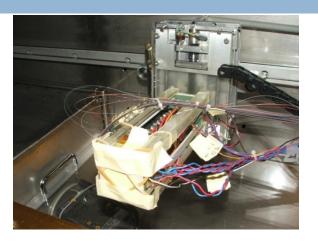

PiN	Total degardatio %
S9055-01	12 %
\$5973-01	33 %
G8522-01	34 %
G8522-03	55 %

- Degradation has relation with active area?
- Smaller PiNs from one family are more immune to SEE, Faster
 & Rad-Harder ?!

Cern T7 Test SetUp

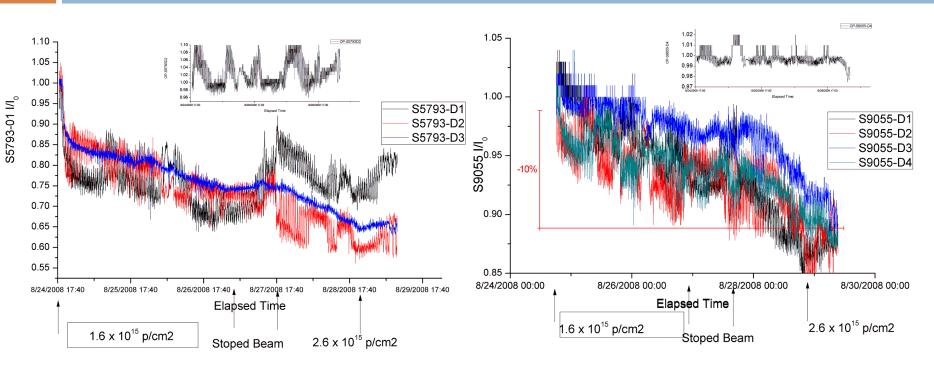


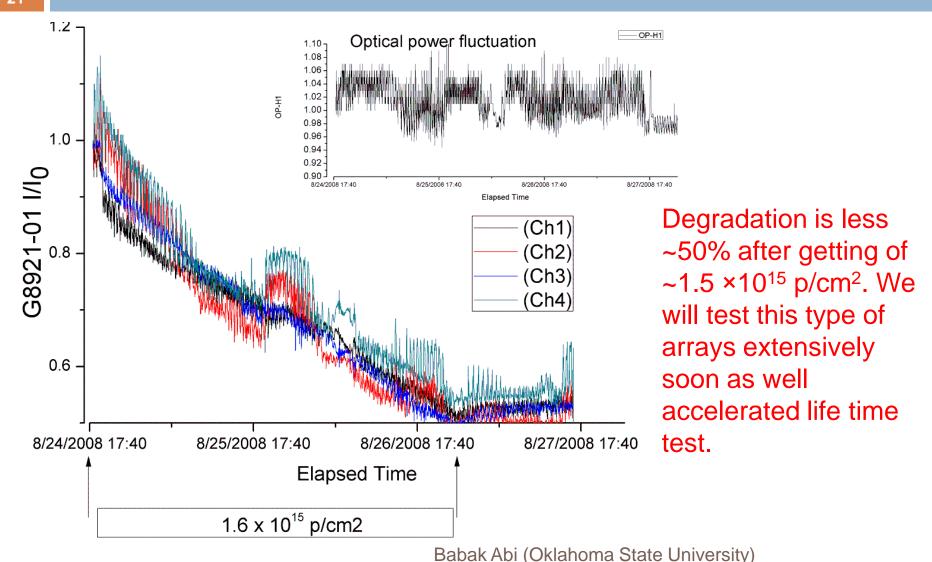
- Very compact & portable
- Full control over optical power for each individual channel with optical power read out
- Expandable modules each one has 16 channels.
- Stable current sources that provide stable optical power with wavelength of 850 nm
- Can be modified into bit error rate test stand



OSU's PiN Test Stand, OPTS V1 (first generation)

Irradiation Setup At T7





Hamamatsu Single PiN Devices

Total fluence is 2.6 ×10¹⁵ p/cm². PiN diodes S9055-01 have lost less than 10% of their initial responsivity – really excellent candidates.

Summary

- Developed 3 compact and practical test stands for PiN responsivity studies (also applicable for Accelerated life time test).
- Concluded that radiation hardness does depend on the active area of PiN diodes from the same family.
- Based on results from IUCF and CERN irradiation runs we identified following candidates:
 - GaAsP array G8921-01 is the first candidate
 - Total degradation is less than 50% (initial responsivity is 0.5 A/W) and still higher than S9055.
 - Ready to buy from 4 to 16 channels per array and future availability
 - Si PiN 9055-01 is the second candidate
 - Plus: Total degradation is less than 10% (initial photosensitivity 0.25~A/W)
 - But: not sure about future availability; have to ask Hamamatsu to produce arrays
 Babak Abi (Oklahoma State University)

Special Thanks to:

D.S. Smith & K.K. Gan (OSU), Maurice Glaser(CERN), Patric Skubic (OU), Jingbo Ye (SMU)

Back up1