
Dynamic Reconfiguration and Incremental Firmware Development in the Xilinx Virtex 5

J. Jones a, M. Stettler a

a Princeton University, Princeton, NJ, USA

b Los Alamos National Laboratory, NM, USA

john.jones@cern.ch

Abstract
The size and complexity of the latest generations of

FPGAs has increased dramatically. This in turn means that the
time taken to develop and build even small firmware projects
is increasing exponentially. Pre-constrained logic placement
and routing are becoming critically important for the use of
specialized components in the FPGA such as serial link
interfaces. This necessitates significant changes from 'normal'
firmware tool flows in order to effectively develop systems
based on these devices.

In this paper we discuss several methods for improving
turnaround speed and design safety, including: pre-placed and
pre-routed hard macros / Relationally Placed Macros (RPMs),
and pre-synthesised black-box netlists. Possible methods of
dynamic partial reconfiguration are also discussed in this
context.

I. INTRODUCTION
The current CMS trigger and DAQ electronics are largely

based on FPGA and processor technology several generations
behind the currently commercially-available devices. Most
systems in CMS are based on either the Xilinx Virtex-II or the
Xilinx Virtex-II Pro (and similar Altera-made FPGAs). Since
then Xilinx has developed the Virtex-4 and Virtex-5, scaling
in feature size from 250nm to 65nm and incorporating many
new hardware features such as Digital Signal Processing
(DSP) cores, tri-mode Gigabit Ethernet (GbE) MACs and PCI
express (PCIe) endpoints amongst others. Furthermore, total
logic capacity has increased approximately ten-fold with a
corresponding increase in maximum clock speed.

However this creates a new problem: FPGA firmware
synthesis and routing, being an NP-hard problem, is an
extremely computationally-intensive process. Given the
arrangement of logic and routing in the devices and the
scaling of feature size in deep submicron technology, the
complexity of logic placement and routing is increasing at a
greater-than-geometric rate. Without the development of new
firmware development techniques to manage this increase in
complexity, firmware build times can increase from minutes
to hours and even days.

Compounding these issues are limitations in the
peformance of the available development tools. In particular,
when using certain advanced features of the device, the
behaviour of the design and performance may change
significantly. In the worst case a new revision of a previously
working design can cease to function after minor changes are
made to the design [1].

II. FPGA TOOL FLOWS

A. Standard Xilinx FPGA Tool Flow
A typical Xilinx tool flow might proceed as follows:

 Synthesise a design from either VHDL or Verilog (or
both). This may be achieved using either vendor-specific
tools such as Xilinx's XST or Mentor Graphics' Precision
Synthesis. The end product is a Look-Up Table (LUT)-
level netlist. At this stage propietary IP cores may also be
introduced.

 Translate a LUT-level netlist into a device-specific
format and combine it with user-defined constraints.
These can also be included as device-specific attributes in
original VHDL or Verilog. At this point any black-box
components must also be included, such that the design is
complete once translate has finished.

 Map the logic component of a design into place in the
device. This process uses a coarse timing definition to
place the components.

 Place and route the design using a precise timing model
for the device, including temperature dependency.

 Generate a device programming file that can be
downloaded into the FPGA.

This tool flow will always provide the best
implementation, although it may take several iterations as part
of the process involves a pseudo-random search. Ultimately it
is impossible for the tools to test every permutation of design
that will fit in the FPGA, so this is a necessary step, but it also
implies that an undefinable amount of time will be taken to
achieve timing closure. In large, complex designs, the
turnaround time is growing rapidly, from minutes to hours
and even days.

In order to reduce this turnaround time, there are various
techniques that can be adopted. The key requirement is to
avoid repeatedly processing unchanging components of a
design every time a minor revision is made. There are several
ways to achieve this.

B. Pre-Synthesised Netlists
The simplest (and most generally-applicable) approach to

speeding up a firmware build is to use the same method used
for pre-built IP core generation. This involves synthesising a
core component of the design that doesn't frequently change,
and then integrating it into the full design at a later stage. This
approach has few limitations, but can only speed up the first
stage of the build process.

The only required change compared to normal synthesis is
to turn off pad instantiation. This prevents the tools from
inferring the top-level ports as FPGA pins. The output is an
ngc/edf file that can be re-imported during a normal build.
The file name and ports must also match those in the
component definition of the main design.

C. Post-Place/Route Macro
A more advanced technique involves taking a sub-

component of the design, then synthesising, placing and
possibly routing it. The placement of the component must also
be defined as a constraint. The end product is known as a
Relationally-Placed Macro (RPM), a logic and routing
template that must have a fixed location in the device.

Unlike the creation of a pre-synthesised netlist, the
creation of an RPM is not a completely automated process.
Firstly, the connections must be defined between the macro
and the outside world, and timing constraints must also be
carefully set. When the design is created it must be ensured
that all timing requirements can be satisfied in the final design
as well, because once the macro is built it cannot be changed
by the tools. Secondly, part of the process involves using
FPGA Editor to directly convert the design, strip out unused
wiring and logic and define the macro ports.

RPMs can either be designed directly at the hardware level
using FPGA Editor, or converted from a placed (and possibly
routed) design. The first of these processes is completely
manual. The second one involves taking an automatically-
generated design and removing unwanted nets. This can be
partly automated using a script but the initial macro
generation must be done by hand. It is also necessary to
prevent the removal of logic from the design that is optimised
away by the tools. This involves turning off logic trimming
during map.

Unfortunately, Xilinx RPMs have several limitations:
firstly, a placed macro cannot use any FPGA blocks that
connect to modules that are also externally connected on the
device (the tools currently do not 'understand' what this
means). An example of this includes the gigabit transceivers.

Routing can also be included in a macro, however
unfortunately, creating a routed RPM can crash the Xilinx
tools and is therefore not recommended. Unless the design has
a very specific layout that's required for optimal behaviour, it
is better to not use RPMs but instead use guided place and
route, where the tools will use a previous build as a reference
for the new one.

D. A Bus Macro Example
As an example, one can consider a simple pass-through

bus macro. Bus macros are commonly used to pass signals
between static and reconfigurable firmware modules in a
design (see section III). In order to do this one must create a
pass-through LUT which acts as a buffer connected to another
on the other side of the design. One can then divide the design
where the routing crosses a logic boundary to create a
boundary interface where the logic never changes.

Figure 1 shows a LUT-level view of the macro in a Virtex
5. Only one of the inputs is used per 6-LUT as it is simply

buffering the input signal to the output. This macro also
includes a register on the output (although this is optional).

Figure 1: An example of a pass-through bus macro at the LUT level.

Figure 2 shows a higher-level view of the design,
including 8 bits of bus between the top and bottom CLBs. As
one can see, all of the wires are pre-routed apart from the
clock tree. A clock system connection must be handled
separately as it connects to a resource shared with the full
design.

The origin marker on the bottom-left CLB in the design is
a reference point for the LOC (location) constraint used to
place the macro in the design.

Figure 2: An example of a pass-through bus macro at the CLB level.
The lines left of the CLBs going through the routing matrix are pre-
routed, whereas the lines passing directly between the CLBs are still

unrouted clock nets.

E. Constraint-Based Placement and Routing
In order to avoid the limitations of hard macros, one can

use the Xilinx User Constraints File (UCF) to force the tools
to use particular CLBs and routing connections for a given
component of a synthesised design. This does however
require a non-standard step and involve large constraint files.
One generates the constraints in much the same way as an
automatically-generated hard macro, with one significant
difference: instead of creating a macro design and re-inserting
it during the translation phase of the firmware build, one

exports the placement and routing constraints to a UCF. This
can then be re-imported during standard firmware build.

This does however require an exact name match between
the net and logic names in the new build and the one from
which the constraints were originally generated. This is in fact
rather difficult as the tools hierarchically-optimise the
firmware, and so it's possible for changes in different
components of the design to stop this from working. The
solution is to pre-build the component corresponding to the
constraints as a LUT-level netlist. The tool flow will then be
forced to keep the names that were present in the original
design.

In spite of the complexity of this process, it ultimately
allows one to pre-constrain a portion of a design precisely.
This leads to the possibility of modifying one component of a
design while keep others completely static, allowing for
dynamic reconfiguration.

III. DYNAMIC PARTIAL RECONFIGURATION
Dynamic partial reconfiguration is the process by which

one can pre-place and route part of a design while changing
another component depending on the demands of the system.
It has many uses, in particular being used to reduce the
required device size by configuring for two mutually-
exclusive modes of operation (e.g. an encryption core where
one chooses between DES/AES). It is also useful when there's
no access method to modify the device's configuration apart
from the device itself. Xilinx FPGAs contain an Internal
Configuration Access Port (ICAP) which has all of the
capabilites of the external configuration interfaces.

Xilinx FPGA programming can be broken down into
'frames', which represent the smallest configuration unit of the
device. These frames can also be changed without powering
down the device. In Virtex FPGAs, it is possible to modify a
portion of a frame without disrupting the configuration of the
rest of the frame. The only complication this creates when
considering partial reconfiguration is that the FPGA's master
reset does not occur for the logic's initial state, so every
component in the firmware must contain an explicit reset
circuit.

If one reads Xilinx documentation on partial
reconfiguration, it will describe two processes: difference-
based reconfiguration and module-based reconfiguration.
These will first be briefly discussed, followed by an
alternative method that uses contraint-based placement and
routing.

A. Module / Difference-Based Reconfiguration
Difference-based partial reconfiguration is the simplest

technique available. It involves editing the design in Xilinx
FPGA Editor and simply re-saving the design. One can then
use the Xilinx configuration file generator bigen to create a
file containing the difference between the two firmwares
(using the '-r' flag). As such it is useful when the design
changes are very small but it is not generally useful.

Module-based partial reconfiguration uses area constraints
to segregate a static portion of the design from the dynamic
component (see figure 3). As such it splits the design into

regions, where a bus macro is used to cross the boundaries
between the different parts of the design. Figure 4 shows an
example of this where the static component of the design is on
the left and the dynamic component of the design is on the
right. This process unfortunately requires the splitting of the
bitstream into components, thereby requiring custom build
steps, some of which are not supported in the latest tools or
require special patches.

Figure 3: An example from the Xilinx online documentation of
module-based design. Note the use of bus macros to traverse the

boundaries between configuration regions.

Figure 4: An example of module-based reconfiguration [4]. The left

component of the design is a static microprocessor core. The right
component is a reconfigurable AES core. Note the boundary between

the devices is marked by a bus macro.

B. Constrained Reconfiguration
Using constraint-based firmware builds presents an

alternative approach to the generation of partial
reconfiguration firmwares. In this approach one uses loose
area constraints to place a static firmware on one part of the
design. This component contains a bridge to the ICAP inside

the FPGA, and a secondary interface for interfacing to the
reconfigurable firmware. In addition there is a bus macro used
to create an interface port in another portion of the design. By
exporting the routing and logic of this design as a constraints
file, new firmwares can be generated by simply feeding the
constraints into the new design. The only other requirement is
that the static component of the firwmare is not changed,
otherwise every related design must be rebuilt. The partial
configuration bitstream can then be generated using the same
method used for difference-based reconfiguration. The major
advantages of this technique are that there are no arbitrary
region constraints and that bus macros are not explicitly
needed. Static and dynamic firmwares can even be
interleaved.

C. A Virtex-5 Floating Point Multiplier
As an example, consider the following. Figure 5 shows an

initial configuration providing a GbE connection via a Xilinx
MGT and a bus bridge in the lower part of the FPGA.
However nothing is connected to the bus in this firmware.

Figure 5: A simple static configuration firmware. Note the bus

macro in the middle of the lower portion of the design.

Figures 6 and 7 show more developed firmwares with
multiple DSP cores (the first is a double-precision multiplier,

the second a double-precision square). The interesting feature
of these designs is that the firmware interleaves with the
original static firmware, allowing better use of FPGA
resources than in module-based reconfiguration.

Figure 6: A more complex firmware with a double-precision
multiplier connected to the bus in the lower part of the FPGA.

Figure 7: A two-multiplier firmware interleaved with the original

static firmware.

IV. CONCLUSIONS
There are many ways in which one can improve turn-

around time and reliability of firmware builds. Pre-built
netlists offer a safe and reliable way of accelerating
turnaround, while hard macros have some additional benefits.
Unfortunately there are reliability issues with these processes
in the current Xilinx tools. Contraint-based design can be used
as a work-around until the tools implement hard macros in a
more reliable manner.

Partial reconfiguration is an extremely useful tool in some
applications, and can be largely automated. There are many
caveats but for a certain class of applications the benefits of
dynamic firmware modification outweight the difficulty in its
implementation.

V. REFERENCES
[1] G. Iles et al., “Performance and Lessons of the CMS

Global Calorimeter Trigger”, TWEPP 2008, Naxos, Greece.
[2] S. Lopez-Buedo et al., “How to Implement Self-

Reconfigurable Coprocessors on Spartan-3”, presentation,
Universidad Autonoma de Madrid.

[3] C. Conger, “Partial Reconfiguration”, presentation,
CHREC Center, University of Florida.

