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Abstract 
The size and complexity of the latest generations of 

FPGAs has increased dramatically. This in turn means that the 
time taken to develop and build even small firmware projects 
is increasing exponentially. Pre-constrained logic placement 
and routing are becoming critically important for the use of 
specialized components in the FPGA such as serial link 
interfaces. This necessitates significant changes from 'normal' 
firmware tool flows in order to effectively develop systems 
based on these devices. 

In this paper we discuss several methods for improving 
turnaround speed and design safety, including: pre-placed and 
pre-routed hard macros / Relationally Placed Macros (RPMs), 
and pre-synthesised black-box netlists. Possible methods of 
dynamic partial reconfiguration are also discussed in this 
context. 

I. INTRODUCTION 
The current CMS trigger and DAQ electronics are largely 

based on FPGA and processor technology several generations 
behind the currently commercially-available devices. Most 
systems in CMS are based on either the Xilinx Virtex-II or the 
Xilinx Virtex-II Pro (and similar Altera-made FPGAs). Since 
then Xilinx has developed the Virtex-4 and Virtex-5, scaling 
in feature size from 250nm to 65nm and incorporating many 
new hardware features such as Digital Signal Processing 
(DSP) cores, tri-mode Gigabit Ethernet (GbE) MACs and PCI 
express (PCIe) endpoints amongst others. Furthermore, total 
logic capacity has increased approximately ten-fold with a 
corresponding increase in maximum clock speed. 

However this creates a new problem: FPGA firmware 
synthesis and routing, being an NP-hard problem, is an 
extremely computationally-intensive process. Given the 
arrangement of logic and routing in the devices and the 
scaling of feature size in deep submicron technology, the 
complexity of logic placement and routing is increasing at a 
greater-than-geometric rate. Without the development of new 
firmware development techniques to manage this increase in 
complexity, firmware build times can increase from minutes 
to hours and even days. 

Compounding these issues are limitations in the 
peformance of the available development tools. In particular, 
when using certain advanced features of the device, the 
behaviour of the design and performance may change 
significantly. In the worst case a new revision of a previously 
working design can cease to function after minor changes are 
made to the design [1]. 

II. FPGA TOOL FLOWS 

A.  Standard Xilinx FPGA Tool Flow 
A typical Xilinx tool flow might proceed as follows: 

 Synthesise a design from either VHDL or Verilog (or 
both). This may be achieved using either vendor-specific 
tools such as Xilinx's XST or Mentor Graphics' Precision 
Synthesis. The end product is a Look-Up Table (LUT)-
level netlist. At this stage propietary IP cores may also be 
introduced. 

 Translate a LUT-level netlist into a device-specific 
format and combine it with user-defined constraints. 
These can also be included as device-specific attributes in 
original VHDL or Verilog. At this point any black-box 
components must also be included, such that the design is 
complete once translate has finished. 

 Map the logic component of a design into place in the 
device. This process uses a coarse timing definition to 
place the components. 

 Place and route the design using a precise timing model 
for the device, including temperature dependency. 

 Generate a device programming file that can be 
downloaded into the FPGA. 

This tool flow will always provide the best 
implementation, although it may take several iterations as part 
of the process involves a pseudo-random search. Ultimately it 
is impossible for the tools to test every permutation of design 
that will fit in the FPGA, so this is a necessary step, but it also 
implies that an undefinable amount of time will be taken to 
achieve timing closure. In large, complex designs, the 
turnaround time is growing rapidly, from minutes to hours 
and even days. 

In order to reduce this turnaround time, there are various 
techniques that can be adopted. The key requirement is to 
avoid repeatedly processing unchanging components of a 
design every time a minor revision is made. There are several 
ways to achieve this. 

B.  Pre-Synthesised Netlists 
The simplest (and most generally-applicable) approach to 

speeding up a firmware build is to use the same method used 
for pre-built IP core generation. This involves synthesising a 
core component of the design that doesn't frequently change, 
and then integrating it into the full design at a later stage. This 
approach has few limitations, but can only speed up the first 
stage of the build process. 



The only required change compared to normal synthesis is 
to turn off pad instantiation. This prevents the tools from 
inferring the top-level ports as FPGA pins. The output is an 
ngc/edf file that can be re-imported during a normal build. 
The file name and ports must also match those in the 
component definition of the main design.  

C.  Post-Place/Route Macro 
A more advanced technique involves taking a sub-

component of the design, then synthesising, placing and 
possibly routing it. The placement of the component must also 
be defined as a constraint. The end product is known as a 
Relationally-Placed Macro (RPM), a logic and routing 
template that must have a fixed location in the device. 

Unlike the creation of a pre-synthesised netlist, the 
creation of an RPM is not a completely automated process. 
Firstly, the connections must be defined between the macro 
and the outside world, and timing constraints must also be 
carefully set. When the design is created it must be ensured 
that all timing requirements can be satisfied in the final design 
as well, because once the macro is built it cannot be changed 
by the tools. Secondly, part of the process involves using 
FPGA Editor to directly convert the design, strip out unused 
wiring and logic and define the macro ports. 

RPMs can either be designed directly at the hardware level 
using FPGA Editor, or converted from a placed (and possibly 
routed) design. The first of these processes is completely 
manual. The second one involves taking an automatically-
generated design and removing unwanted nets. This can be 
partly automated using a script but the initial macro 
generation must be done by hand. It is also necessary to 
prevent the removal of logic from the design that is optimised 
away by the tools. This involves turning off logic trimming 
during map. 

Unfortunately, Xilinx RPMs have several limitations: 
firstly, a placed macro cannot use any FPGA blocks that 
connect to modules that are also externally connected on the 
device (the tools currently do not 'understand' what this 
means). An example of this includes the gigabit transceivers. 

Routing can also be included in a macro, however 
unfortunately, creating a routed RPM can crash the Xilinx 
tools and is therefore not recommended. Unless the design has 
a very specific layout that's required for optimal behaviour, it 
is better to not use RPMs but instead use guided place and 
route, where the tools will use a previous build as a reference 
for the new one. 

D.  A Bus Macro Example 
As an example, one can consider a simple pass-through 

bus macro. Bus macros are commonly used to pass signals 
between static and reconfigurable firmware modules in a 
design (see section III). In order to do this one must create a 
pass-through LUT which acts as a buffer connected to another 
on the other side of the design. One can then divide the design 
where the routing crosses a logic boundary to create a 
boundary interface where the logic never changes. 

Figure 1 shows a LUT-level view of the macro in a Virtex 
5. Only one of the inputs is used per 6-LUT as it is simply 

buffering the input signal to the output. This macro also 
includes a register on the output (although this is optional). 

 
Figure 1: An example of a pass-through bus macro at the LUT level. 

Figure 2 shows a higher-level view of the design, 
including 8 bits of bus between the top and bottom CLBs. As 
one can see, all of the wires are pre-routed apart from the 
clock tree. A clock system connection must be handled 
separately as it connects to a resource shared with the full 
design. 

The origin marker on the bottom-left CLB in the design is 
a reference point for the LOC (location) constraint used to 
place the macro in the design. 

 
Figure 2: An example of a pass-through bus macro at the CLB level. 
The lines left of the CLBs going through the routing matrix are pre-
routed, whereas the lines passing directly between the CLBs are still 

unrouted clock nets. 

E.  Constraint-Based Placement and Routing 
In order to avoid the limitations of hard macros, one can 

use the Xilinx User Constraints File (UCF) to force the tools 
to use particular CLBs and routing connections for a given 
component of a synthesised design. This does however 
require a non-standard step and involve large constraint files. 
One generates the constraints in much the same way as an 
automatically-generated hard macro, with one significant 
difference: instead of creating a macro design and re-inserting 
it during the translation phase of the firmware build, one 



exports the placement and routing constraints to a UCF. This 
can then be re-imported during standard firmware build. 

This does however require an exact name match between 
the net and logic names in the new build and the one from 
which the constraints were originally generated. This is in fact 
rather difficult as the tools hierarchically-optimise the 
firmware, and so it's possible for changes in different 
components of the design to stop this from working. The 
solution is to pre-build the component corresponding to the 
constraints as a LUT-level netlist. The tool flow will then be 
forced to keep the names that were present in the original 
design. 

In spite of the complexity of this process, it ultimately 
allows one to pre-constrain a portion of a design precisely. 
This leads to the possibility of modifying one component of a 
design while keep others completely static, allowing for 
dynamic reconfiguration. 

III. DYNAMIC PARTIAL RECONFIGURATION 
Dynamic partial reconfiguration is the process by which 

one can pre-place and route part of a design while changing 
another component depending on the demands of the system. 
It has many uses, in particular being used to reduce the 
required device size by configuring for two mutually-
exclusive modes of operation (e.g. an encryption core where 
one chooses between DES/AES). It is also useful when there's 
no access method to modify the device's configuration apart 
from the device itself. Xilinx FPGAs contain an Internal 
Configuration Access Port (ICAP) which has all of the 
capabilites of the external configuration interfaces. 

Xilinx FPGA programming can be broken down into 
'frames', which represent the smallest configuration unit of the 
device. These frames can also be changed without powering 
down the device. In Virtex FPGAs, it is possible to modify a 
portion of a frame without disrupting the configuration of the 
rest of the frame. The only complication this creates when 
considering partial reconfiguration is that the FPGA's master 
reset does not occur for the logic's initial state, so every 
component in the firmware must contain an explicit reset 
circuit. 

If one reads Xilinx documentation on partial 
reconfiguration, it will describe two processes: difference-
based reconfiguration and module-based reconfiguration. 
These will first be briefly discussed, followed by an 
alternative method that uses contraint-based placement and 
routing. 

A. Module / Difference-Based Reconfiguration 
Difference-based partial reconfiguration is the simplest 

technique available. It involves editing the design in Xilinx 
FPGA Editor and simply re-saving the design. One can then 
use the Xilinx configuration file generator bigen to create a 
file containing the difference between the two firmwares 
(using the '-r' flag). As such it is useful when the design 
changes are very small but it is not generally useful. 

Module-based partial reconfiguration uses area constraints 
to segregate a static portion of the design from the dynamic 
component (see figure 3). As such it splits the design into 

regions, where a bus macro is used to cross the boundaries 
between the different parts of the design. Figure 4 shows an 
example of this where the static component of the design is on 
the left and the dynamic component of the design is on the 
right. This process unfortunately requires the splitting of the 
bitstream into components, thereby requiring custom build 
steps, some of which are not supported in the latest tools or 
require special patches. 

 
Figure 3:  An example from the Xilinx online documentation of 
module-based design. Note the use of bus macros to traverse the 

boundaries between configuration regions. 

 
Figure 4:  An example of module-based reconfiguration [4]. The left 

component of the design is a static microprocessor core. The right 
component is a reconfigurable AES core. Note the boundary between 

the devices is marked by a bus macro. 

B.  Constrained Reconfiguration 
Using constraint-based firmware builds presents an 

alternative approach to the generation of partial 
reconfiguration firmwares. In this approach one uses loose 
area constraints to place a static firmware on one part of the 
design. This component contains a bridge to the ICAP inside 



the FPGA, and a secondary interface for interfacing to the 
reconfigurable firmware. In addition there is a bus macro used 
to create an interface port in another portion of the design. By 
exporting the routing and logic of this design as a constraints 
file, new firmwares can be generated by simply feeding the 
constraints into the new design. The only other requirement is 
that the static component of the firwmare is not changed, 
otherwise every related design must be rebuilt. The partial 
configuration bitstream can then be generated using the same 
method used for difference-based reconfiguration. The major 
advantages of this technique are that there are no arbitrary 
region constraints and that bus macros are not explicitly 
needed. Static and dynamic firmwares can even be 
interleaved. 

C.  A Virtex-5 Floating Point Multiplier 
As an example, consider the following. Figure 5 shows an 

initial configuration providing a GbE connection via a Xilinx 
MGT and a bus bridge in the lower part of the FPGA. 
However nothing is connected to the bus in this firmware. 

 
Figure 5:  A simple static configuration firmware. Note the bus 

macro in the middle of the lower portion of the design. 

Figures 6 and 7 show more developed firmwares with 
multiple DSP cores (the first is a double-precision multiplier, 

the second a double-precision square). The interesting feature 
of these designs is that the firmware interleaves with the 
original static firmware, allowing better use of FPGA 
resources than in module-based reconfiguration. 

 
Figure 6:  A more complex firmware with a double-precision 
multiplier connected to the bus in the lower part of the FPGA. 

 
Figure 7:  A two-multiplier firmware interleaved with the original 

static firmware. 

IV. CONCLUSIONS 
There are many ways in which one can improve turn-

around time and reliability of firmware builds. Pre-built 
netlists offer a safe and reliable way of accelerating 
turnaround, while hard macros have some additional benefits. 
Unfortunately there are reliability issues with these processes 
in the current Xilinx tools. Contraint-based design can be used 
as a work-around until the tools implement hard macros in a 
more reliable manner. 

Partial reconfiguration is an extremely useful tool in some 
applications, and can be largely automated. There are many 
caveats but for a certain class of applications the benefits of 
dynamic firmware modification outweight the difficulty in its 
implementation. 
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