

CMS Tracker Services: present status and potential for upgrade

Robert Stringer University of California, Riverside

On behalf of the CMS Tracker Collaboration

- Largest Silicon Detector ever built
 - 206 m² active area
 - 15232 Modules
 - Almost 10 Million readout channels!
- Immense size requires new procedures for installation.
 - Systematic testing

- 2000 CAEN LV/HV power supplies
- 4 CAEN Mainframes
- 7 PLC Systems
- 1000 Temperature and Humidity Probes
- 440 FEDs (80% of all FEDs in CMS)

- Services
 - Cooling
 - 980 Pipes
 - Power
 - 2300 Cables
 - DAQ
 - 3347 Fibers

- 2300 power cables must be connected from 29 racks in 6 balconies to 28 Patch Panels (PP1) in YB0.
 - Each cable has unique id (barcode)
 - Online cable DB maintained.
 - Configuration DB contains all hardware and software maps.

Balconies

- The Control System and Safety System relies on the hardware and software maps
 - PP1 Checkout is the final test to assure that the map in the Configuration DB matches reality.
 - We check:
 - Physical cable map from PS racks to PP1
 - Physical cable map PLCs to sensors
 - Physical cable map of Interlock cables/relays
 - Logical map of PS and sensors in TCS
 - Logical map of Interlock relays

Loadbox Testing

- Loadboxes were connected up to 5 at a time
- Probe simulators were attached
- Software powered appropriate power supplies and verified values.

PP1

PP1 Checkout Status Overview

- Results stored in DB
 - Webpage showed status
 - Approx. 5% of cables had problems

- Cable Map Accuracy
 - Need to power correct detector elements
 - Control hierarchy based around cooling geometry
 - Errors in cable map could result in powering elements without cooling, endangering the tracker.
 - Errors in software map could cause wrong elements to be shutdown in a dangerous situation.

- Interlock Cables run from relays to racks.
 - Each rack has a distribution box to separate to each crate.

Software tools verify physical cable map and

software logic

TKCC

- Tracker Connection and Checkout (TKCC)
 - DCU/CCU Scan
 - Tracker elements are powered and readout one at a time to detect swapped power cables.
 - Connection Run
 - DAQ is read out to verify fiber connections.
 - Timing Run
 - Synchronize all channels, latency due to different cable lengths
 - Gain Scan
 - Determine optimum bias and gain settings
 - Pedestal Run
 - Store pedestals to DB & noise studies

Connection Run

- Light levels for each fiber are measured
- Low saturation light levels identify bad connections or dirty fibers

- Timing run
 - Sendsimultaneoustrigger
 - Response measured
 - Adjust latency

Before

After

- Laser provides signal
 - Optimal gain chosen

- Heat Exchanger Failure
 - Brine contaminated C₆F₁₄
 - This would have been a disaster if tracker was connected (it wasn't!).
- Brine was replaced by C₆F₁₄
 - A similar failure will not endanger tracker.

Top

Bottom

- The Tracker participated in CRUZET3
 - Cosmic Run Under ZEro Tesla
 - Over 12 Million Cosmic events were taken.

16

- Tracker was OFF during First Beam event on Sept. 10
 - Once it is determined that it is safe for the Tracker it will be turned ON.
 - Using BLM & BCM data we saw nothing that would endanger the Tracker.

- Effect on Tracker
 - 20x more particles in the Tracker

	LHC	SLHC (Phase 2)
peak luminosity	$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$	$10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
integrated luminosity	100 fb ⁻¹ /year	1000 fb ⁻¹ /year
c.m. energy	14 TeV	14 TeV
bunch crossing interval	25 ns	50 ns (?)
# pp events / crossing	~20	~400
# particles in tracker	~1 000	~20 000

- Requirements for the SLHC environment
 - Higher Luminosity implies:
 - Trigger (for other subdetectors)
 - High Pt
 - Higher Radiation
 - Shorter strips -> More channels
 - Lower power consumption
 - Material budget
 - Power cables and cooling pipes can be reused!

- To handle increased radiation readout chips will be made with smaller feature size
 - At most 0.13μm
 - Smaller features result in lower voltage (~1.2V)
 - More channels make total power consumption comparable with current Tracker (~30kW)
 - Higher currents exceed the limits of the existing cables
 - A new powering scheme must be devised.

- Studies have begun
 - DC-DC converters
 - Requires
 - Low-noise
 - Radiation hard
 - 4T tolerant
 - Serial Powering
 - Different grounds
 - Loss of chain

$$g = V_{in} / V_{out} >> 1$$
 $P_{drop} = R \cdot I_0^2 \cdot n^2 / g^2$

- Lower operation temperature (-50°C)
 - Better for high radiation environment
 - Lower leakage current
- Considering CO₂ Cooling
 - Could use smaller pipes, lower material budget
 - R & D has started.

- Size of the CMS Tracker required systematic checkout.
 - Software and Hardware tools were developed
 - All aspects were tested (Power, Control, DAQ)
 - Checkout went smoothly and was only slightly delayed by cooling problems.
- The CMS Tracker is commissioned and is ready for physics with 99.7% of channels operating!

- SLHC Tracker R&D is underway.
 - Power Cables and Cooling pipes will be reused.
 - Modified powering schemes are being tested to handle higher currents.
 - CO₂ cooling is favored.
- There is a good potential for reuse of materials for the SLHC Tracker!