

Top Quarks and New Physics : Resonances, Spin Correlations and Boosted Top

Ben Auerbach on behalf of the ATLAS and CMS collaborations

Standard Model At The LHC: Freiburg, Germany

Search for t t Resonances in ATLAS and CMS

- The electroweak symmetry breaking may have a connection to the top quark mass
- Might there be an additional resonance that decays to a pair of top quarks?
- This is an active area of research for both ATLAS and CMS
- Possible candidates are a KK Gluon or a Z' decay
 - The two candidates mentioned in the coming slides are a Z' with a 1.2% width
 - R. M. Harris and S. Jain, Cross Sections for Leptophobic Topcolor Z' Decaying to Top-Antitop, Eur. Phys. J. C72 (2012) 2072
 - and a KK gluon with a 10% width
 - K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003

CMS Search for All Hadronic Tops, EXO11006

ATLAS Search for All Hadronic Tops, TOPQ-2012-15/

SM@LHC -April 9-12 2013- Auerbach

Search for t t Resonances in ATLAS and CMS (II) (All Hadronic)

- CMS uses Cambridge-Aachen R=0.8 jets with:
 - p_T>350 GeV, <u>CMS PAS JME-09-001</u>
 - Then the jet must be TopTagged
 - Require 2 jets pass this criteria (type 1+1)
 - If only 1 jet passes this, look for a W-jet and b-jet nearby on the other side

 Expecting all of top's decay products in a small radius

- ATLAS uses HEPTopTagger and TopTemplateTagger:
 - HepTopTagger arXiv:1006.2833
 - Requires 2 b-tag matched
 - Anti– $k_t R=1.5 jets$
 - pT > 200 GeV
 - TopTemplateTagger arXiv:1006.2035
 Requires 2 b-tag matched
 - Anti $-k_t R=1.0$ jets,
 - p_T > 500 (450) GeV

Search for t t Resonances in ATLAS and CMS (II) (All Hadronic) (III)

- Search for t \overline{t} resonances using the M(t \overline{t}) spectrum
- Since no excesses are seen, set limits using a Bayesian approach
- 0.7 TeV $<M_{Z'} < 1.0$ TeV, & 1.28 $< M_{Z'} < 1.32$ TeV excluded (ATLAS)
- 1.3 TeV < $M_{Z'}$ < 1.5 TeV excluded (CMS)
 - Z' with width = 1.2%
- 0.7 TeV < M_{gKK}< 1.62 TeV excluded (ATLAS)
- ▶ 1.4 TeV < M_{gKK}< 1.5 TeV excluded (CMS)</p>
 - g_{KK} width = 10%

Friday, April 12, 13

Searching for t t mass resonances (l + jets channel)

- Start by identifying isolated lepton, require MET and m_T to cut QCD
- Results are searched for in a Resolved and Boosted Regime
 - Maximize sensitivity to lower and high mass Z'
- The Resolved analyses require χ^2 to combine objects into W and tops
- Boosted analysis can use proximity to combine objects for top or anti-top
- Largest backgrounds in both cases are data-driven

⊡tī

3 3.5 m, [TeV]

Limits using the boosted and lower p_T t t selection

- Limits can be set on both a broad resonance like the KK gluon or a narrow resonance like the Z', g_{KK}
- Z' (1.2% width) is excluded M < 1.7 TeV (ATLAS), 1.53 TeV (CMS)
- ▶ g_{KK} is excluded for M < 1.82 TeV (CMS), 1.9 TeV (ATLAS)

Friday, April 12, 13

Sensitivity in Perspective (CDF's lepton+jets)

- But CDF's relative sensitivity to lowmass Z' is still higher than at the LHC
 - CDF has set most sensitive relative limits on the low mass Z'
- Important to continue pushing on the Z' searches at the LHC to probe for the unexpected

<u>CDF PRL110, 121802 (2013)</u>

SM@LHC- Auerbach

 M(tj): arXiv:1203.3894 , Phys. Rev. Lett. 108, 211805 (2012)

Search for W' as a top-bottom resonance

- Require an electron, or muon:
- At least two jets are required:
 - Leading jet $p_T > 120 \text{ GeV}$
 - Subleading jet $p_T > 40 \text{ GeV}$
 - At least one jet is b-tagged

CMS <u>B2G-12-010-pas</u>

- To reconstruct the W' mass:
 - Start by reconstructing the W boson with the lepton and MET
 - Reconstruct top quark from:
 - With best jet which forms a W+jet mass closest to 172.5 GeV
 - Use the highest p_T jet remaining after the top quark reconstruction (jet2)
 - Combine top quark and jet2 to make the W' mass

SM@LHC- Auerbach

Search for W' as a top-bottom resonance

- Top and W+jets backgrounds are normalized and corrected using datadriven techniques
- A W' with mass < 2 TeV is excluded at 95 % confidence

Friday, April 12, 13

Spin Correlations @ LHC

- ATLAS and CMS have searched for tt dileptonic decays for spin correlations
- At the LHC tt production is dominated by like-helicity gluon pairs
- At higher invariant mass, tt production switches to unlike-helicity
- The correlation in the spins can be reconstructed looking at the $\Delta \varphi(l^+, l^-)$

Spin Correlations @ LHC (II)

- A binned likelihood fit is used on the $\Delta \phi(l^+, l^-)$ distribution
 - Looking for the fraction of correlated vs. uncorrelated spin composition, $f^{\rm SM}$
 - f^{SM} measures how similar to SM predictions the spins are correlated
 - If $f^{SM} = 0$, this would imply the spins are uncorrelated
 - If $f^{SM} > 1$ the spins would be more correlated than the SM
- ATLAS: $f^{SM} = 1.30 \pm 0.14$ (stat) ± 0.27 (syst); CMS: $f^{SM} = 0.74 \pm 0.08$ (stat.) ± 0.24 (syst.).
 - Both are consistent with the SM
- Can use f^{SM} to translate into an asymmetry measurement as well

Friday, April 12, 13

Spin Correlations @ LHC (III)

- Using the relation $A_{\text{Helicity}} = A_{\text{Helicity}}(SM)^* f^{SM}$
- CMS: A_{helicity} = 0.24 ± 0.02(stat.) ± 0.08(syst.)
- ATLAS: A_{helicity} = 0.40 ± 0.04 (stat) +0.08 (sys.)
- Standard Model (NLO) prediction* : 0.31
- CMS looks at the asymmetry as a function of M(t⁻t)
- A_{∆φ}(M(t⁻t) > 450 GeV) = 0.378 ± 0.019
- SM (M(t⁻t) > 450 GeV) prediction: -0.384 ± 0.003

Both Measurements are Consistent with the Standard Model

 W. Bernreuther and Z.-G. Si, "Distributions and correlations for top quark pair production and decay at the Tevatron and LHC", Nuc. Phys. B 837 (2010) 90

Search for CP violation in Single Top

- CP violation is thought to be the source of the Baryon asymmetry
- But known sources (b hadrons, Kaons) of CP violation, too small for this

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \overline{b} \gamma^{\mu} (V_{L}P_{L} + V_{R}P_{R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \overline{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{m_{W}} (g_{L}P_{L} + g_{R}P_{R}) t W_{\mu}^{-} + \text{h.c.}$$

$$A_{z} = \frac{N_{\text{evt}}(\cos \theta > z) - N_{\text{evt}}(\cos \theta < z)}{N_{\text{evt}}(\cos \theta > z) + N_{\text{evt}}(\cos \theta < z)}$$

$$\Rightarrow \text{ s x q defines N}$$

$$\Rightarrow \text{ Use } \cos(\theta^{N}) \text{ as the discriminant}$$

$$\Rightarrow \text{ Can relate } \cos(\theta^{N}) \text{ to } A_{z} \text{ to } \text{ Im}(g_{R})$$

$$See \text{ Kevin Sapp's Talk from Yesterday}$$

$$\frac{ATLAS-CONF-2013-032}{N}$$

SM@LHC -April 9-12 2013- Auerbach

Search for CP violation in Single Top (V)

- Limits set on magnitude of Im(g_R) function of top quark polarization
- Limits on Im(g_R) vs. P is in agreement with SM expectations
- $A = 3/4 P (N_R N_L)$

Top (Pair) Production and FCNC

- CMS
- Searching for t t production; one top quark decays to a Z and a quark
- Search for 3 leptons: 2 from Z, 1 from W; and large MET, 2 jets
- 2 search regions: b-tagged jet OR large transverse energy S_T

ATLAS

Searches for single top signatures

 $\frac{\kappa_{qgt}}{\Lambda} \overline{t} \sigma^{\mu\nu} T^a (f_q^L P_L + f_q^R P_R) q G_{\mu\nu}^a + h.c.$

One Lepton, MET, mT

Sets limits on K_{ugt}/Λ , K_{cgt}/Λ

One b-tagged jet

 $\mathcal{L}_{\text{eff}} = g_s$

Top (Pair) Production and FCNC

- No excesses of $t \rightarrow Zq$ observed at CMS
 - BR(t \rightarrow Zq) < 0.21%

SM@LHC -April 9-12 2013- Auerbach

- No excess of $g \rightarrow t c$ or u observed at ATLAS
 - BR(t \rightarrow ug) < 5.7 · 10⁻⁵, BR(t \rightarrow cg) < 2.7 · 10⁻⁴
 - $K_{ugt}/\Lambda < 6.9 \cdot 10^{-3} \text{ TeV}^{-1}$,
 - $K_{cqt} / \Lambda < 1.6 \cdot 10^{-2} \text{ TeV}^{-1}$

Events / 10 [GeV

×10-3

Search for pair-produced excited top pairs

- The excited top (t*) decays exclusively to a top quark, and gluon
 - Pair production of t*, and at least one top's W decays to an e or μ
- The search looks for a lepton+MET + at least 6 jets (>0 b-tagged jets)
 - Chi-squared value to find best W candidate, top candidate and remaining jets are used to find t* (top +gluon) candidates
 - In each event:
 - $-M(I\nu)\,=\,M(q\overline{q})\,=\,M_W$
 - $-M(lvb) = M(q\overline{q}b) = M_{top}$
 - $-M(lvbg) = M(q\overline{q}bg) = M_{top+g}$
- Using a data-driven background shape to search for a t* bump

CMS/B2G-12-014

Search for pair-produced excited top pairs

- No excess is observed over the background function and limits are set
- Excited top quark (t*) is excluded with mass < 794 GeV</p>

Conclusions

- Many searches are being conducted to better understand the top quark's properties
- ATLAS and CMS have searched for New Physics in many of tops' properties
 - Angles, bumps, jet-masses
- Searches for top-bjet and t t resonances are probing multi-TeV masses
 - No excesses seen so far...more papers and more energy are on the way
- Spin Correlations of the t t system have been measured to be in agreement with the Standard Model
 - Repeating these analyses on the full 2012 dataset would be interesting
- First search for possible CP violation with single top process
 - Results in agreement with SM, but more data could be insightful
- 8TeV search for excited top quarks set limits

Boosted Selection Mass of the Top Quark

 Using a W-mass constraint, reconstruct the top quark mass in both the muon and electron channel

ATLAS-CONF-2012-136

SM@LHC- Auerbach

Search for CP violation in Single Top (II)

- Most sensitive angle is found to be θ^N
- Which is defined by:
 - Normal (N) = $s_T \times q$ (momentum of W boson)
 - Transverse = $q \times N$
- s_T is the spin-vector of the top quark (also the 3-vector of the spectator quark in top quark rest frame)
- Can use approximate relation between A_{FB}^N and Im(g_R) to set limits on a CP violating term

Search for CP violation in Single Top (III)

- Event selection, one isolated e or μ , with $p_T > 25$ GeV
 - electrons $|\eta| < 2.47$, excluding $1.37 < |\eta| < 1.52$
 - muons $|\eta| < 2.5$
- Exactly 2 jets with $p_T > 30 \text{ GeV}$
 - If 2.75<|η| < 3.5, p_T> 35 GeV
 - Exactly one b-tagged jet (55% efficiency) w/ $|\eta| < 2.5$
 - Exactly one non-b-tagged jet w/ $|\eta| < 4.5$
- m_T and MET both greater than 35 GeV
- W mass used to determine the 4-vector of the neutrino to reconstruct the top quark 4-vector

To Focus in on Single Top

- $H_T > 210$ GeV, reconstructed top quark mass is between 150–190 GeV
- difference in η between b and light jet > 1.0

Search for CP violation in Single Top (IV)

- Missing- E_T and M_T well modeled
- Multijet background modeled using matrix method
- The W+HF jets background comes from theoretical predictions
- Then checked using control regions
 - reconstructed top quark mass outside window

SM@LHC -April 9-12 2013- Auerbach

200

Search for t t Resonances in ATLAS and CMS (II) (All Hadronic) (II)

- The backgrounds are derived using data-driven techniques
 - CMS calculates the mistag probability rate
 - looking for 2 jets which look like a top quark decay but fail top identification
 - look for a $p_T\!\!>\!\!350$ GeV, |rapidity| < 2.4 jet which passes top tagging
 - uses the mistag probability to weight event which enters their kinematic selections
 - ATLAS uses a 4x4 grid to estimate contamination in signal region P
 - Iterative approach start by using background dominated regions to calculate K and M
 - Use K and M from background predictions, and F to calculate background in P
 - Numerous background checks are compared and all are consistent

