W/Z production at the LHC: state of the art of radiative corrections

Guido Montagna

Dipartimento di Fisica, Università di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it

SM@LHC 2013, Freiburg, 9 - 12 April, 2013

Mainly based on work in coll. with L. Barzè, C.M. Carloni Calame, P. Nason, O. Nicrosini, F. Piccinini, A. Vicini

Guido Montagna, Univ. & INFN Pavia Radiative corrections to W/Z production

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The quest for precision

Several millions / year of $p p \rightarrow W, Z \rightarrow \ell \nu_{\ell}, \ell^+ \ell^-, l = e, \mu$ events at the LHC

- - 1. standard candles to calibrate detectors, constrain the PDFs, tune Monte Carlo ...
 - 2. backgrounds to new physics searches
 - 3. handles to measure precisely electroweak parameters: $M_W, \Gamma_W, \sin^2 \theta_{\text{eff}}^\ell$

Quantum consistency of the SM after the discovery of the Higgs

M. Baak et al., the Gfitter group 2012

High–precision QCD

Total production rates and rapidity distributions at NNLO (R. Hamberg, W.L. van Neerven and T. Matsuura 1991 / W.L. van Neerven and E.B. Zijlstra 1992 / R.V. Harlander and W.B. Kilgore 2002 / C. Anastasiou *et al.* 2003, 2004)

- Fully differential cross sections at NNLO in FEWZ (K. Melnikov and F. Petriello 2006 / R. Gavin et al. 2010, 2012) and DYNNLO (S. Catani et al. 2009)
- □ Large logs resummation in ResBos (C. Balazs and C.P. Yuan 1997 / F. Landry *et al.* 2002) and in DYqT (G. Bozzi *et al.* 2009, 2011)
- □ NLO Parton Showers: MC@NLO (S. Frixione and B. Webber 2002) / POWHEG (P. Nason 2004) / SHERPA (S. Hoeche *et al.* 2011)

 \equiv

Sar

Electroweak corrections: main features

Electroweak calculations & tools

Complete NLO calculations $\circ W$ production Pole approximation / NLO U. Baur, S. Keller and D. Wackeroth 1999 / U. Baur and D Wackeroth 2004 WGRAD/WGRAD2 NI O S. Dittmaier and M. Krämer 2002 $DK \rightarrow RADY$ + γ -induced/ $\mathcal{O}(\alpha^2)$ Sudakov logs / multi-photon FSR S. Brensing *et al.* 2007 NLO + γ -induced + multi-photon PS C.M. Carloni Calame *et al.* 2006 HORACE NLO + γ -induced A. Arbuzov et al. 2006, 2008 SANC $\circ \gamma^*, Z$ production NLO_{OED} / NLO_{EW} U. Baur, S. Keller and W.K. Sakumoto 1998 / U. Baur et al. 2002 ZGRAD/ZGRAD2

 $\label{eq:NLO} \begin{array}{ll} \text{NLO} + \gamma \text{-induced} + \text{multi-photon} \ \text{PS} & \text{C.M. Carloni Calame $et al. 2007 HORACE$} \\ \text{NLO} + \gamma \text{-induced} & \text{A. Arbuzov $et al. 2008 SANC$} \\ \text{NLO} + \gamma \text{-induced} / \mathcal{O}(\alpha^2) \ \text{Sudakov logs} / \ \text{multi-photon} \ \text{FSR} & \text{S. Dittmaier and} \\ \text{M. Huber 2010} & \text{RADY} \end{array}$

□ Tools for exclusive multiple photon radiation PHOTOS (P. Golonka and Z. Was 2006) / WINHAC (W. Placzek and S. Jadach 2003) / HORACE (C.M. Carloni Calame *et al.* 2004, 2005) ...

Guido Montagna, Univ. & INFN Pavia Radiative corrections to W/Z production

Tuned comparisons: examples

Ongoing work @ CERN coordinated by D. Wackeroth and A. Vicini

Les Houches 2005, 2007 / TeV4LHC 2007

\circ W production

Guido Montagna, Univ. & INFN Pavia

$\text{NLO}_{\rm EW}$ and multi–photon corrections at the pole

 $\,\triangleright\,$ NLO $_{\rm EW}$ dominated by FSR, that strongly depends on lepton id. criteria

Guido Montagna, Univ. & INFN Pavia

Electroweak Sudakov logs in the high tails

 \triangleright FSR (red) insufficient w.r.t. NLO_{EW} (black) in the tails

Two-loop Sudakov logs and (inclusive) radiation of real vector bosons partially cancel the large negative one-loop Sudakov logs
U. Baur 2007

Guido Montagna, Univ. & INFN Pavia Radiative corrections to W/Z production

Combining QCD and electroweak corrections

Issue fixed by the calculation of the full 2-loop $\mathcal{O}(\alpha\alpha_s)$ corrections, unavailable yet. Alternatives:

 $\label{eq:Additive} \fbox{Additive} 1 + \delta_{\rm QCD} + \delta_{\rm EW} \quad \text{vs.} \qquad \fbox{Factorized} (1 + \delta_{\rm QCD}) \times (1 + \delta_{\rm EW})$

□ NLO_{QCD} ⊕ NLO_{EW}: RADY and SANC/mcsanc for W & Z production S. Bondarenko and A. Sapronov 2013

Guido Montagna, Univ. & INFN Pavia

QCD SEW combination in POWHEG: the method

P. Nason 2004 / S. Frixione, P. Nason and C. Oleari 2007

POWHEG idea: hardest radiation at NLO followed by $p_{\rm T}$ -ordered shower

$$d\sigma = \sum_{f} \bar{B}^{f}(\boldsymbol{\Phi}_{n}) d\boldsymbol{\Phi}_{n} \left\{ \Delta^{f} \left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}^{\mathrm{min}} \right) + \sum_{\alpha_{\mathrm{T}}} \frac{d\boldsymbol{\Phi}_{\mathrm{rad}} \; \theta \left(k_{\mathrm{T}} - p_{\mathrm{T}}^{\mathrm{min}} \right) \Delta^{f}(\boldsymbol{\Phi}_{n}, k_{\mathrm{T}}) \; R\left(\boldsymbol{\Phi}_{n+1} \right)}{B^{f}(\boldsymbol{\Phi}_{n})} \right\}$$

 $\Box \ \bar{B}^{f}(\mathbf{\Phi}_{n})$: NLO normalization

$$\bar{B}^{f}(\Phi_{n}) = \left[B\left(\Phi_{n}\right) + V\left(\Phi_{n}\right)\right]_{f} + \sum_{\alpha_{r}} \int d\Phi_{rad} \left[R\left(\Phi_{n+1}\right) - C\left(\Phi_{n+1}\right)\right]$$
$$+ \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{\alpha_{\oplus}}\left(\Phi_{n,\oplus}\right) + \sum_{\alpha_{\ominus}} \int \frac{dz}{z} G_{\ominus}^{\alpha_{\ominus}}\left(\Phi_{n,\ominus}\right)$$

 $\Box \ \Delta^f(\mathbf{\Phi}_n, p_{\mathrm{T}})$: (modified) Sudakov form factor

$$\Delta^{f}(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}) = \exp\left\{-\sum_{\alpha_{\mathrm{T}}} \int \frac{d\Phi_{\mathrm{rad}} R\left(\boldsymbol{\Phi}_{n+1}\right) \theta\left(k_{\mathrm{T}}\left(\boldsymbol{\Phi}_{n+1}\right) - p_{\mathrm{T}}\right)}{B^{f}\left(\boldsymbol{\Phi}_{n}\right)}\right\}$$

 $\Box \quad \mathsf{QCD} \longrightarrow \mathsf{QCD} \otimes \mathsf{EW} \text{ combination}$

C. Bernaciak and D. Wackeroth 2012 L. Barzè et al. 2012, 2013

 $\begin{array}{ll} V = \text{virtual} + \text{soft/coll.} = V_{\text{QCD}} + V_{\text{EW}} & R = \text{real radiation m.e.} = R_{\text{QCD}} + R_{\text{EW}} \\ C = \text{coll. counterterms} = C_{\text{QCD}} + C_{\text{QED}} & G_{\oplus/\ominus} = \text{coll. remnants} = G_{\text{QCD}} + G_{\text{QED}} \\ \alpha_{\text{r}} = \text{singular regions of } R = \alpha_{\text{r}}^{\text{QCD}} + \alpha_{\text{r}}^{\text{QED}} \\ \end{array}$

Guido Montagna, Univ. & INFN Pavia Radiative corrections to W/Z production

QCD SEW combinations in the POWHEG BOX

Two independent realizations, both available in the POWHEG BOX repository (S. Alioli *et al.* 2010) at http://powhegbox.mib.infn.it

- W production POWHEG-BOX/W-ew-BW (C. Bernaciak and D. Wackeroth 2012)
- 2. W/Z production POWHEG-BOX/W-ew-BMNNP POWHEG-BOX/Z-ew-BMNNPV (L. Barzè et al. 2012, 2013)

Main differences

- L. Barzè *et al.* 2012, 2013
 - \triangleright V_{EW} with hybrid regularization scheme: DR + mass scheme ($m_{q/g} = m_{\gamma} = 0$, $m_{\ell} \neq 0$). FKS subtraction for IR divergences.
 - $\triangleright~$ QCD shower and multiple FSR with <code>PHOTOS</code>. Choice of $p_T^{min} \sim \Lambda_{\rm QCD}$ for QCD/QED radiation from partons / m_ℓ for QED radiation off leptons.
- C. Bernaciak and D. Wackeroth 2012
 - $\triangleright~V_{\rm EW}, R_{\rm EW}$ from <code>WGRAD2</code> library. Phase space slicing for IR divergences.
 - \triangleright QCD shower but no multi- γ radiation.

<ロト < 回 ト < 三 ト < 三 ト - 三 - のへ()

Combined QCD SEW corrections with POWHEG

C. Bernaciak and D. Wackeroth 2012

\circ W production

Guido Montagna, Univ. & INFN Pavia

Combined QCD SEW corrections with POWHEG

L. Barzè et al. 2012, 2013

\circ W production

Guido Montagna, Univ. & INFN Pavia

Combined QCD SEW corrections with POWHEG

L. Barzè et al. 2012, 2013

$\circ W/Z$ production off the resonance

• Z-boson p_T vs. ATLAS/CMS data (w/o tuning)

Guido Montagna, Univ. & INFN Pavia

SAR

Conclusions

What is available

QCD

- \checkmark NNLO QCD corrections to total and differential cross sections
- \checkmark NLO PS generators / Calculations including resummation

EW

NLO + multiple photon corrections + two-loop Sudakov logs

QCD⊕/⊗EW

- $\sqrt{\sqrt{}}$ Partial $\mathcal{O}(\alpha_{s}\alpha)$ calculations (A. Denner *et al.* 2009, 2011 / W.B. Kilgore & C. Sturm 2011)
- $\sqrt{\sqrt{}}$ Additive (N)NLO_{QCD} \oplus NLO_{EW} combinations
- $\sqrt{\sqrt{}}$ Factorized NLO_{QCD} \oplus NLO_{EW} \otimes QCD/QED PS combinations

What is needed

- \ominus Full $\mathcal{O}(\alpha_{s}\alpha)$ calculation(s)
- \ominus New PDF set(s) with QED contributions \hookrightarrow Ongoing work by CTEQ & NNPDF Coll.
- Deeper understanding of th. uncertainty due to EW (e.g. pair radiation, γ-induced processes ...) and mixed QCD-EW contributions to precision measurements

GGI Workshop

Prospects and Precision at the Large Hadron Collider at 14 TeV

Period: From 01–09–2014 to 24–10-2014 / With $5^{\rm th}$ HP2 workshop, 3–5 September

Organizers: Daniel de Florian, Sven Moch, Guido Montagna and Fulvio Piccinini

Topics:

- Particle physics in view of the next generation of LHC data
- Precision QCD and electroweak calculations
- □ New developments in Quantum Field Theory at higher orders and Monte Carlo generators
- Higgs physics, electroweak measurements and new physics searches
- I Jet dynamics, parton distribution functions and multiple parton interactions

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

Guido Montagna, Univ. & INFN Pavia Radiative corrections to W/Z production

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Independent studies of QCD \otimes EW combination

□ SANC interfaced to PYTHIA8 and HERWIG++ (P. Richardson *et al.* 2012)

- □ NLO EW corrections and YFS QED⊗QCD exponentiation in HERWIRI2 (S. Yost *et al.* 2011)
- □ Additive/Factorized combination using MC@NLO and HORACE (G. Balossini *et al.* 2010)
- D PHOTOS interfaced to MC@NLO (N.E. Adam et al. 2008, 2010)
- □ QCD resummation & NLO QED FSR in ResBos-A (Q.-H. Cao & C.P. Yuan 2004)

→ Ξ → < Ξ →</p>

-

DQC

Available $\mathcal{O}(\alpha \alpha_s)$ calculations

- 1. NLO_{QCD} corrections to V + visible γ production, including leptonic V decays (J.M. Campbell, R.K. Ellis and C. Williams 2011 / D. de Florian and A. Signer 2000)
- 2. NLO_{EW} corrections to V + visible jet production, w/o (J.H. Kühn *et al.* 2005, 2007) and with leptonic V decays (A. Denner *et al.* 2009, 2011)
- 3. Mixed QCD SQED virtual corrections to NC DY (W.B. Kilgore and C. Sturm 2011)

Guido Montagna, Univ. & INFN Pavia $\$ Radiative corrections to W/Z production

$NLO_{\rm EW}$ corrections in POWHEG: validation

L. Barzè et al. 2012, 2013

\circ W production

Guido Montagna, Univ. & INFN Pavia

QED effects in PDFs & γ -induced processes

Guido Montagna, Univ. & INFN Pavia

Radiative corrections to $W/Z\ {\rm production}$

DQC