

Production of multiple electroweak bosons: theoretical status

Ansgar Denner

Universität Würzburg

Standard Model @ LHC 2013 Freiburg, April 9, 2013

Standard Model @ LHC 2013, Freiburg, April 9, 2013

Ansgar Denner (Würzburg)

Relevance of multiple electroweak boson production and perturbative corrections

- Vector-boson pair production
- Vector-boson pair production with additional jets
- Triple vector-boson production
- Vector-boson + jet production

Summary

 probe non-Abelian structure of the SM (compare WW production at LEP2)

Julius-Maximilians-

WÜRZBURG

- sensitive to (anomalous) triple and quartic vector-boson couplings
- subject to unitarity cancellations in SM at high energies
 ⇒ enhanced sensitivity to deviations from SM
- probe dynamics of longitudinal massive gauge bosons
 ⇒ window to Higgs mechanism
- important background processes to
 - Higgs production with decay into vector-boson pairs
 - searches for new physics with leptons and *E*_T signatures (e.g. production of supersymmetric particles)
- \Rightarrow precise theoretical predictions required!

for test of SM and search for physics beyond

Process class: $pp \rightarrow$ weak vector bosons $W, Z, (\gamma)$ vector bosons decay: leptonic $V \rightarrow \overline{l}l'$, hadronic $V \rightarrow \overline{q}q'$ QCD corrections:

- for leptonic decays: only production corrected
- generic size: $\mathcal{O}(\alpha_{\rm s}) \sim 10\%$ enhanced by logarithms and new channels $\Rightarrow 25-100\%$
- generic size of NNLO corrections: $\mathcal{O}(\alpha_s^2) \sim \mathrm{few}\%$

EW corrections:

Julius-Maximilians-

UNIVERSITÄ

WÜRZBURG

- involve full process: production and decay
 - \Rightarrow more complicated structure
 - \Rightarrow suitable approximations useful

• typical size for $\sqrt{\hat{s}} \sim M_{\rm Z}$: $\mathcal{O}(\alpha/\sin^2\theta_{\rm w}) \sim {\rm few}\%$

• typical size for $\sqrt{\hat{s}} \gg M_Z$: $\mathcal{O}(\alpha/\sin^2 \theta_w) \ln^2 \left(M_W^2/\hat{s} \right) \sim \mathcal{O}(10 - 50\%)$ Sudakov logarithms of universal origin

Vector-boson pair production

Standard Model @ LHC 2013, Freiburg, April 9, 2013

Ansgar Denner (Würzburg)

Production of multiple electroweak bosons: theoretical status - p.4

Vector-boson pair production

Leading order:

 $V,V'=\mathrm{Z},\mathrm{W}^{\pm}(,\gamma)$

only $q \bar{q}'$ initial states triple-gauge-boson couplings

NLO-QCD corrections for stable vector bosons

- $pp \rightarrow ZZ$
- Ohnemus, Owens '91; Mele, Nason, Ridolfi '91
- $pp \rightarrow W^{\pm}Z$ Ohnemus '91; Frixione, Nason, Ridolfi '92
- $pp \rightarrow W^+W^-$ Ohnemus '91; Frixione '93

NLO-QCD corrections including leptonic decays:

- \Rightarrow realistic cuts, spin correlations, off-shell effects
 - VV production below threshold (\Rightarrow Higgs background)
 - phenomenological results: Ohnemus '94; Dixon, Kunszt, Signer '99; Campbell, Ellis '99
 - analytical amplitudes: Dixon, Kunszt, Signer '98
 - public Monte Carlo code MCFM: Campbell, Ellis '99

Julius-Maximilians-

WÜRZBURG

occur first at one-loop level formally of NNLO but enhanced by large gluon luminosity

calculations

• stable vector bosons:

Dicus, Kao, Repko '87; Glover, van der Bij '89, Kao, Dicus '91

inclusion of off-shell effects:

Matsuura, van der Bij '91; Binoth, Ciccolini, Kauer, Krämer '05,'06; Binoth, Kauer, Mertsch '08, Campbell, Ellis, Williams '11

results

- relative contribution depends strongly on cuts
 - ► 4% for total cross section
 - \blacktriangleright up to $30{-}35\%$ after "Higgs cuts"

Dührssen, Jakobs, van der Bij, Marquard '05 Binoth, Ciccolini, Kauer, Krämer '06

enhanced by jet veto

NLO-QCD for $\mathrm{pp} \to \mathrm{WW} \to \mathrm{e}^+ \nu_\mathrm{e} \mu^- \bar{\nu}_\mu$

Campbell, Ellis, Williams '11

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

${\cal K}$ factor as function of jet veto

- sizeable and cut-dependent NLO corrections 50-100%
- larger corrections for "Higgs cuts"
- *K*-factor can be reduced by imposing a jet veto
- gluon-induced contributions are enhanced by a jet veto

 $\begin{array}{l} \text{Basic cuts: } p_{\rm T}^l > 20 \, {\rm GeV}, \quad |\eta_l| < 2.5 \\ E_{\rm T}^{\rm miss} > 20 \, {\rm GeV} \end{array} \\ \\ \text{Higgs cuts: } m_{\rm ll} > 20 \, {\rm GeV}, \quad \Delta \phi_{\rm ll} < 60^\circ \\ p_{\rm T}^{l, \rm max} > 30 \, {\rm GeV}, \quad p_{\rm T}^{l, \rm min} > 25 \, {\rm GeV} \end{array}$

Only small part of NNLO-QCD corrections available: virtual corrections: Chachamis, Czakon, Eiras '08

- two-loop and one-loop-squared corrections
- for W^+W^- final state in $q\bar{q}$ annihilation
- in the high-energy limit (all invariants $\gg M_W^2$)

complicated calculation at technical frontier

real corrections:

NLO calculations for VVj (see below) constitute real part of NNLO for VV

NLO-QCD merged to parton-shower codes PYTHIA, HERWIG, SHERPA

- MC@NLO in HERWIG
- Frixione, Webber '06
- POWHEG in HERWIG++ Hamilton '10
- POWHEG in SHERPA Höche, Krauss, Schönherr, Siegert '10
- POWHEG-BOX Melia, Nason, Röntsch, Zanderighi '11
- aMC@NLO in HERWIG and PYTHIA6 Frederix et al. '11

Results for $e^+e^-e^+e^-$, $e^+e^-\mu^+\mu^-$ final states at 7 TeV: Frederix et al. '11

- +40% NLO corrections (size depends strongly on cuts, energy, process)
- distributions are generally rescaled, some nontrivial kinematic effects
- NLO scale uncertainty 2% for qq, qg channels, 20% for gg channel
- PDF uncertainty $\sim 2\%$
- effects of parton shower generally small apart from few distributions where differences are expected (p_{T4l})

+

More complicated than QCD corrections \Rightarrow approximations used

Accomando, Denner, Pozzorini '01 Accomando, Denner, Kaiser '04

- double-pole approximation for vector bosons
- high-energy approximation: logarithmic corrections

result:

large negative EW corrections (Sudakov logarithms) for large energy scales

AP

Bierweiler, Kasprzik, Kühn, Uccirati '12 complementary calculation

- complete NLO EW corrections for stable W^+W^- , $W^{\pm}Z$, $ZZ (M_{VV'} > M_V + M'_V!)$
- for W^+W^- also gg and $\gamma\gamma$ -induced contributions ($\mathcal{O}(10\%)$)

cross section as a function of the cut on $p_{\mathrm{T}V}$

Sudakov regime ($\hat{s}, |\hat{t}|, |\hat{u}| \gg M_{\rm W}^2$):

relative EW corrections of Bierweiler et al. and Denner et al. agree within few % \Rightarrow off-shell effects and corrections to decays small for inclusive observables

Julius-Maximilians-

UNIVERSITÄ

WÜRZBURG

Kühn, Metzler, Penin, Uccirati '11

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- NNL EW logarithms in high-energy limit for stable W⁺W⁻ at
 - one loop: $\alpha \ln^n (s/M_W^2)$, n = 2, 1, 0
 - ▶ and two loops: $\alpha^2 \ln^n(s/M_W^2)$, n = 4, 3, 2
- significant cancellations between LL, NLL and NNLL logarithmic corrections
- maximal effect 60% (one-loop) and 20% (two loops) at $14 \,\mathrm{TeV}$ LHC

- NNLO QCD: in progress? Czakon et al.
- combination of all pieces required
 - NLO QCD
 - ► gg contributions
 - parton-shower matching
 - NLO EW
 - NNLL EW logarithms
 - ► NNLO QCD?
- parton-shower matching for EW corrections

combination exists

Vector-boson-pair production with two jets

Ansgar Denner (Würzburg)

- EW production involves vector-boson scattering, sensitive to
 - EW symmetry breaking sector
 - Higgs boson
 - quartic vector-boson couplings
- W^+W^+jj : distinct signature: same-sign dileptons $+ \not\!\!E_T + 2$ jets
- background to Higgs production and BSM searches in VBF

Jäger, Zanderighi '11 $\sqrt{s} = 7 \,\mathrm{TeV}$, NLO QCD, basic cuts: $p_{\mathrm{T},j} > 20 \,\mathrm{GeV}$

- large rapidity separation Δy_{ii}
- dominant for large $M_{\rm jj}$
- $\sigma_{\rm EW}^{\rm inclusive} = 1.10 \, {\rm fb}$

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

 $\sigma_{\rm EW}^{\rm VBFcuts} = 0.201 \, {\rm fb}$

- small rapidity separation Δy_{ii}
- prefers small M_{ii}

•
$$\sigma_{\rm QCD}^{\rm inclusive} = 2.12 \, {\rm fb}$$
 192%

 $\sigma_{\rm OCD}^{\rm VBFcuts} = 0.0074\,{\rm fb}$ 3.7%

VV + 2 jet production at NLO

NLO-QCD corrections including leptonic decays

- $pp \rightarrow VVjj$ (all channels) Bozzi, Jäger, Oleari, Zeppenfeld '06–'09
- $pp \rightarrow W^+W^-jj$ Greiner et al. '12
- $pp \rightarrow W^+W^+jj$ Denner, Hošeková, Kallweit '12

- $pp \rightarrow W^+W^+jj$ Melia, Melnikov, Röntsch, Zanderighi '10
- $pp \rightarrow W^+W^-jj$

Melia, Melnikov, Röntsch, Zanderighi '11

parton-shower matching with POWHEG-BOX $_{pp} \rightarrow \mathrm{W^+W^+jj}$

• $pp \rightarrow W^+W^+jj, W^+W^-jj$ Zanderighi, Jäger '11, '13 $pp \rightarrow W^+W^+jj$ Melia, Nason, Röntsch, Zanderighi '11

NLO-EW corrections exist only for $VV \rightarrow VV$: (not for full $2 \rightarrow 6$ process)

- $ZZ \rightarrow ZZ$ Denner, Dittmaier, Hahn '97, $W^+W^+ \rightarrow W^+W^+$ Denner, Hahn '98
- size: $\mathcal{O}(10-100\%)$, increasing with energy

Triple vector-boson production

Standard Model @ LHC 2013, Freiburg, April 9, 2013

Ansgar Denner (Würzburg)

Production of multiple electroweak bosons: theoretical status - p.16

sensitive to triple and quartic vector-boson couplings

NLO calculations

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

on-shell vector bosons

including leptonic decays

- $pp \rightarrow ZZZ$ Lazopoulos, Melnikov, Petriello '07
- $pp \rightarrow VVV$ Binoth, Ossola, Papadopoulos, Pittau '08

- $pp \rightarrow WWZ$ Hankele, Zeppenfeld '07 (VBFNLO)
- $pp \rightarrow WZZ, WWW$ Campanario et al. '08 (VBFNLO)

AP

• LO $\propto lpha_{ m s}^0$

Julius-Maximilians-

WÜRZBURG

- NLO corrections drastically underestimated by LO scale variation
- large K factors: 1.5 2.2 owing to new qg channel at NLO
- small NLO scale dependence: $\mathcal{O}(10\%)$
- *K* factors depend strongly on phase-space region and observable

scale dependence for $\mathrm{pp} \to \mathrm{W^+W^-W^+}$

Campanario et al. '08

Vector-boson plus jet production

Ansgar Denner (Würzburg)

Production of multiple electroweak bosons: theoretical status - p.18

- important contribution to single V production \Rightarrow measurement of M_V , Γ_V , electroweak mixing angle $\sin^2 \theta_{\text{eff}}^{\text{lept}}$
- tests of jet dynamics in QCD
- constraints on parton distribution functions (PDFs)
- source of high-energy leptons and/or missing transverse momentum ⇒ background to new physics

NLO-QCD corrections: Giele, Glover, Kosower '93; Campbell, Ellis '02

EW corrections

Julius-Maximilians-

WÜRZBURG

- $pp \to Z + jet + X$
 - ▶ weak $\mathcal{O}(\alpha)$ correction (stable Z) Maina, Moretti, Ross '04 $\delta_{\text{weak}} \sim -(5-15)\%$ for $p_{\text{T}} \lesssim 500 \,\text{GeV}$
 - (NLO + NNLL) EW corrections (stable Z) Kühn, Kulesza, Pozzorini, Schulze '04, '05
- $pp \rightarrow W + jet + X$
 - EW corrections for stable W: Kühn et al. '07; Hollik, Kasprzik, Kniehl '07 $\delta_{\text{weak}} \sim -30\%$ for $p_{\text{T}} \sim 2000 \,\text{GeV}$ photon-induced processes contribute appreciably (several % at large p_{T}) Hollik et al. '07
 - EW and QCD NLO corrections including leptonic decays $pp \rightarrow W + l\nu + jet + X$ Denner, Dittmaier, Kasprzik, Mück '10

Jet transverse momentum in $pp \rightarrow W + jet + X$

- large electroweak corrections for high $p_{\rm T}$ Sudakov logarithms
- 5% photon-induced corrections at $1 \, {
 m TeV}$
- for large p_{T,j} huge QCD corrections owing to new subprocess pp → 2 jets + W with two opposite hard jets and soft W veto on 2nd jet reduces corrections considerably

LO configuration new NLO configuration

Julius-Maximilians-

WÜRZBURG

Summary

Standard Model @ LHC 2013, Freiburg, April 9, 2013

Ansgar Denner (Würzburg)

Production of multiple electroweak bosons: theoretical status - p.21

NLO-QCD corrections available for many multi-particle processes in

- MCFM Campbell, Ellis, Williams
- VBFNLO Arnold, ..., Zeppenfeld
- Upcoming: OPENLOOPS Cascioli, Maierhöfer, Pozzorini

NLO-QCD parton-shower matching for many processes via

- POWHEG BOX Alioli, Frixione, Nason, Oleari, Re
- aMC@NLO Alwall et al.
- SHERPA Höche et al.

NLO-EW corrections

Julius-Maximilians

WÜRZBURG

- much more complicated structure
- exist only for some processes, often based on approximations
- more calculations in progress in particular including vector-boson decays and off-shell effects
- separation of photons and jets needed (e.g. $W\gamma/Wj$)
 - \Rightarrow photon fragmentation function or Frixione criterion

			loop induced	
process	NLO QCD	NLO PS matching	gg contribution	NLO EW
$\gamma\gamma$	√, NNLO	\checkmark	\checkmark	
$V\gamma$	\checkmark		\checkmark	PA
Vj	\checkmark	\checkmark	OS	\checkmark
VV	\checkmark	\checkmark	\checkmark	OS/PA+HEA
$\gamma\gamma\gamma$	\checkmark			
$\gamma { m jj}$	VBF			
$V\gamma\gamma$	\checkmark			
$V\gamma\mathrm{j}$	\checkmark		OS	
Vjj	VBF	\checkmark		
VVj	\checkmark		OS	
$VV\gamma$	\checkmark			
VVV	\checkmark			
VVjj	VBF,(√)	(√)		

OS = on-shell approximation

Julius-Maximilians-

WÜRZBURG

VBF= vector-boson-fusion part

PA = pole approximation

HEA= high-energy approximation

- (\checkmark) : partial results or specific processes
- \Rightarrow much work to be done, in particular on EW side

Conclusions

Multiple vector-boson (MVB) production

- allow to test non-Abelian structure of SM
- constitute important background for Higgs and BSM production

QCD corrections

Julius-Maximilians-

WÜRZBURG

- QCD corrections large and strongly dependent on experimental set-up
- NLO-QCD corrections exist for many MVB processes
- NLO-QCD parton-shower matching is becoming standard (typically small effect)
- very few NNLO corrections known

EW NLO corrections

- typically few % to 10% \Rightarrow important for precise measurements
- strongly enhanced for high energy scales $\sim 40\%$
- *VV*: available for on-shell vector bosons or in approximations
- not yet available for $pp \rightarrow VV \rightarrow 4l$, $pp \rightarrow VVV$, or $pp \rightarrow jjVV$

Backup slides

Standard Model @ LHC 2013, Freiburg, April 9, 2013

Ansgar Denner (Würzburg)

Production of multiple electroweak bosons: theoretical status - p.24

- Natural input parameters: α , $M_{\rm W}$, $M_{\rm Z}$, m_f , $M_{\rm H}$, $\alpha_{\rm s}$
- alternative input parameter sets: G_{μ} instead of $M_{\rm W}$ or α G_{μ} no fundamental parameter, but precisely measured in μ decay
- weak mixing angle: on-shell definition $\sin \theta_{\rm w} = \sqrt{1 M_{\rm W}^2/M_Z^2}$
- definition of α

Julius-Maximilians-

WÜRZBURG

- on-shell: α(0) appropriate for external photons
- $\alpha(M_Z), \alpha(\sqrt{s}): \frac{\alpha(M_Z)}{\alpha(0)} \approx 1.06$ absorbs running of α from Q = 0 to EW scale appropriate for weak bosons and internal photons

• G_{μ} scheme: $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{W}^{2}(1 - M_{W}^{2}/M_{Z}^{2})/\pi$: $\frac{\alpha_{G_{\mu}}}{\alpha(0)} \approx 1.03$ absorbs running of α from Q = 0 to EW scale and $\Delta \rho$ in $Wf\bar{f}'$ coupling appropriate for W bosons

appropriate choice of α reduces missing higher-order corrections

gauge invariance demands unique input-parameter set!

Vector-boson pair production

Standard Model @ LHC 2013, Freiburg, April 9, 2013

Ansgar Denner (Würzburg)

Production of multiple electroweak bosons: theoretical status - p.25

Electroweak corrections vs anomalous couplings

 $pp \rightarrow WZ \rightarrow l\nu_l l' \bar{l}': \qquad \sqrt{s} = 14 \text{ TeV}$

Julius-Maximilians-

WÜRZBURG

distribution in rapidity difference of Z boson and lepton from W decay $\Delta y(Zl)$

NLO = NLO electroweak: $\sim -20\%$ 2a/2b: $\Delta g_1^{\rm Z} = \pm 0.02$, 3a/3b: $\Delta \kappa_{\gamma} = \pm 0.04$, 4a/4b: $\lambda = \pm 0.02$ $\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta y(Zl)}$ [fb] Accomando, Kaiser '05 1.6 Born 1.4 1.2 1 EW corrections can fake 0.8 anomalous couplings 0.6 0.4 0.2 0 -3 -2 0 2 3 -1 1 $\Delta y(\mathbf{Z}l)$

Vector-boson-pair production with one jet

Standard Model @ LHC 2013, Freiburg, April 9, 2013

Ansgar Denner (Würzburg)

Production of multiple electroweak bosons: theoretical status - p.26

Large fraction of VV-pair events exhibits additional jet activity

 \Rightarrow precise knowledge of VV + jet(s) production needed

calculations

Julius-Maximilians

UNIVERSITÄ

WÜRZBURG

- $pp \rightarrow W^+W^-j$ (including leptonic decays) Dittmaier, Kallweit, Uwer '07, '09; Campbell, Ellis, Zanderighi '07 (MCFM)
- $pp \rightarrow W^{\pm}Zj$ (including leptonic decays and anomalous couplings) Campanario et al. '10 (VBFNLO)
- $pp \rightarrow ZZj$ (no decays) Binoth, Gleisberg, Karg, Kauer, Sanguinetti '10

results roughly similar as for VV production

- sizeable NLO-QCD corrections: 25-35% for inclusive cross sections ($\mu = M_V$) not covered by LO scale dependence size depends strongly on scale, cuts, energy
- effect of NLO-QCD corrections enhanced by cuts typical for Higgs search: 70% for typical "Higgs cuts" Campbell, Ellis, Zanderighi '07
- NLO-QCD scale uncertainty reduced by veto on second jet no reduction for observables characterized by large $p_{\rm T}$ values Campanario et al. '10

Example: scale dependence for $pp \rightarrow WWj + X$

• $\sigma_{
m LO} \propto lpha_{
m s}$

- scale dependence stabilises at NLO for genuine WW + j production
- significant scale dependence is introduced by WW + 2 j (difference between green and red curves)

new diagram

new configuration

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Vector-boson-pair production with two jets

Ansgar Denner (Würzburg)

NLO corrections to distribution of leading jet

Denner, Hošeková, Kallweit '12

• fixed factorization scale: $\mu = M_W$ large negative corrections for high $p_{T,j_{max}}$

• dynamical factorization scale: $\mu = \sqrt{p_{T,j_1}p_{T,j_2}}$ constant K factor for high $p_{T,j_{max}}$

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Vector-boson plus photon production

Ansgar Denner (Würzburg)

- simplest multi-vector-boson production processes besides ${
 m pp}
 ightarrow \gamma\gamma$
- measurement of $VV\gamma$ couplings
- background to new physics
- NLO QCD corrections:

Ohnemus '93, Baur, Hahn, Ohnemus '93, De Florian, Signer '00

NLO QCD corrections $\sim 30\%$, can be enhanced by cuts Campbell, Ellis, Williams '11

EW corrections:

- $pp(\rightarrow W\gamma) \rightarrow l\bar{\nu}\gamma + X$ Accomando, Denner, Pozzorini '01; Accomando, Denner, Meier '05 $\mathcal{O}(\alpha)$ correction in pole approximation for W $\rightarrow \delta \sim -10\% (-27\%)$ for $p_{T,\gamma} \gtrsim 250 \,\text{GeV} (700 \,\text{GeV})$
- $pp \rightarrow Z\gamma + X$ Hollik, Meier '04 and $pp(\rightarrow Z\gamma) \rightarrow ll\gamma + X$ Accomando, Denner, Meier '05 $\mathcal{O}(\alpha)$ correction for on-shell Z bosons / in pole approximation $\Rightarrow \delta \sim -10\%$ for $M_{\gamma Z}$ distribution
- calculation of complete $\mathcal{O}(\alpha)$ correction in progress