

Associated Higgs Production VH(bb)+ttH, all channels

José Maneira (LIP-Lisbon) on behalf of the ATLAS and CMS Collaborations

Why $H \rightarrow bb$ and associated production?

- Large QCD backgrounds
 - High p_{T} b-jet production ~10⁶ x larger
 - Use W or Z or tt pair in associated production to reduce backgrounds
 - productio smaller for VH (1.09 pb, inclusive W) and ttH (0.13 pb) with respect to gluon 10^{-4} fusion (19.52 pb)

Is the new particle the **Standard Model Higgs?**

- Direct test of Yukawa coupling predictions
- Largest decay BR (58%) at 125 GeV

ATLAS	4.7 fb ⁻¹	13.0 fb ⁻¹	ATLAS-CONF-2012-161
CMS	5.0 fb ⁻¹	12.1 fb ⁻¹	CMS-PAS-HIG-12-044
!	Still not	the full 8 T	eV dataset! ($\sim 21 \text{ fb}^{-1}$)

B-Jet tagging and Mbb response

ATLAS-CONF-2012-043 ATLAS-CONF-2012-161

CMS PAS HIG-12-044

Use track impact parameters, secondary and subsequent vertices

TechniqueEfficiency at example operating pointb-quarksc-quarkslight-quarks+gluonsATLASMultivariate70%20%0.7%CMSLikelihood72%23%3%

Jets from b-quarks

- Scale different than light jets
- With leptons/neutrinos, more massive
- ATLAS (Anti-kT jets R=0.4)
 - Corrections for muon-in-jet, p_{T} -dependent bias
- CMS (Particle flow R=0.5)
 - BDT energy regression algorithm exploiting btag and jet variables
 - ~15% improvement in mass resolution (~10%), validated with Z(ll) + bb

ATLAS VH analysis

ATLAS WH(bb) candidate event

Associated Higgs Production

VH event selection

Frigger:	MET sing	le-lepton	single+di-lep	ton			
Object	0 lepton	1-lepton	2-lepton	Dataset	ta. 17 fb ⁻	$\frac{1}{1}$ for $\sqrt{s} = 7$	TaV
Leptons	0 loose leptons	1 tight lepton + 0 loose leptons	1 medium lepton + 1 loose lepton	Dataset	13.0 fb	$\int_{-1}^{10} \text{for } \sqrt{s} = 8$	TeV
	2 b-tags	2 b-tags	2 b-tags				
Tets	$p_{\rm T}^1 > 45 { m GeV}$	$p_{\rm T}^1 > 45 {\rm ~GeV}$	$p_{\rm T}^1 > 45 {\rm GeV}$	-			
3013	$p_{\rm T}^2 > 20 {\rm GeV}$	$p_{\rm T}^2 > 20 {\rm GeV}$	$p_{\rm T}^2 > 20 {\rm GeV}$				
	+ ≤ 1 extra jets	+ 0 extra jets	-	_			
Missing F.	$E_{\rm T}^{\rm miss} > 120 {\rm GeV}$	-	$E_{\rm T}^{\rm miss} < 60 { m GeV}$				
Missing LT	$p_{\rm T}^{\rm miss} > 30 {\rm GeV}$				16 Si	gnal regio	ns
	$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$					8	
	$Min[\Delta \phi(E_T^{miss}, jet)] > 1.5$				0.1(1	1.0.
	$\Delta \phi(E_{\rm T}^{\rm miss}, b\bar{b}) > 2.8$				0-lepton o	channel 2 and	1 3jets
Vector Boson	-	$m_{\rm T}^W < 120 { m GeV}$	$83 < m_{\ell\ell} < 99 \text{ GeV}$	$E_{\rm T}^{\rm mass}$ (GeV)	120-160	160-200	>200
	1 <u>1</u> 1111111111111111111111111111111111			$\Delta R(b, b)$	0.7-1.9	0.7-1.7	<1.5
					1 lenton (hannal	

- S/B increases with vector boson $\mathbf{p}_{_{\mathrm{T}}}$
- Events separated in $p_{T}(V)$ bins to

optimize the cuts

• Not yet enough √s and ∫Ldt to use jet substructure techniques

$\Delta \mathbf{K}(v,v)$	0.7-1.9 0.7-		-1./	<1.5			
1-lepton channel							
$p_{\rm T}^W$ (GeV)	0-50 50-100	100-150	150-200	>200			
$\Delta R(b, \bar{b})$	>0.7	7	0.7-1.6	<1.4			
$E_{\rm T}^{\rm miss}$ (GeV)		> 25					
$m_{\rm T}^{\rm W}({\rm GeV})$	> 40	-					
2-lepton channel							
$p_{\rm T}^Z({\rm GeV})$	0-50 50-100	100-150	150-200	>200			
$\Delta R(b, \bar{b})$	>0.7	7	0.7-1.8	<1.6			

VH(bb) backgrounds

[. Maneira (LIP)

Associated Higgs Production

m_{bb} [GeV]

m_{bb} [GeV]

m_{bb} [GeV]

Additional control regions

Flavour and signal fits

- Flavour maximum likelihood fit
 - 1 and 2-leptons, 0/1/2 tag+top control regions
 - One floating scale factor for each background
 - Determine V+c, V+light scale factors
 - V+b, top also floated
 - Improved understanding of background
 - $p_T(V)$ distribution falls off more rapidly in data than MC, so MC is reweighted to data

Associated Higgs Production

- V+jets: correction of 5-10% from pre-tag, checked on 1-tag
- top: correction of 15% from 1-lepton 3 jets/4 jets CR
- Binned profile likelihood fit
 - 16 signal regions + top control regions
 - Systematic uncertainties as nuisance parameters
 - W+b, Z+b, top floated in fit
 - account for syst. and signal contamination

$\frac{1}{Z + c} = \frac{\sqrt{s}}{1.99 \pm 0.51} = 8 \text{ TeV}$			
Z + c 1.99 ± 0.51 0.71 ± 0.23	1	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
	Z + c	1.99 ± 0.51	0.71 ± 0.23
Z+ light 0.91 ± 0.12 0.98 ± 0.11	Z+ light	0.91 ± 0.12	0.98 ± 0.11
W + c 1.04 ± 0.23 1.04 ± 0.24	W + c	1.04 ± 0.23	1.04 ± 0.24
<i>W</i> + light 1.03 ± 0.08 1.01 ± 0.14	W+ light	1.03 ± 0.08	1.01 ± 0.14

Signal							
Uncertainty [%]	0 lepton		1 lepton	2 leptons			
	ZH	WH	WH	ZH			
<i>b</i> -tagging	8.9	9.0	8.8	8.6			
Jet/Pile-up/E ^{miss}	19	25	6.7	4.2			
Lepton	0.0	0.0	2.1	1.8			
$H \rightarrow bb \text{ BR}$	3.3	3.3	3.3	3.3			
$VH p_T$ -dependence	5.3	8.1	7.6	5.0			
VH theory PDF	3.5	3.5	3.5	3.5			
VH theory scale	1.6	0.4	0.4	1.6			
Statistical	4.9	18	4.1	2.6			
Luminosity	3.6	3.6	3.6	3.6			
Total	24	34	16	13			

Background

Uncertainty [%]	0 lepton	1 lepton	2 leptons
b-tagging	6.5	6.0	6.9
c-tagging	7.3	6.4	3.6
light tagging	2.1	2.2	2.8
Jet/Pile-up/ $E_{\rm T}^{\rm miss}$	20	7.0	5.4
Lepton	0.0	2.1	1.8
Top modelling	2.7	4.1	0.5
W modelling	1.8	5.4	0.0
Z modelling	2.8	0.1	4.7
Diboson	0.8	0.3	0.5
Multijet	0.6	2.6	0.0
Luminosity	3.6	3.6	3.6
Statistical	8.3	3.6	6.6
Total	25	15	14

<u>Largest experimental uncertainties:</u> b-tagging, jet energy scale and resolution

CMS VH analysis

VH event selection, analysis

		_	Variable	$W(\ell \nu)H$	$Z(\ell\ell)H$	$Z(\nu\nu)H$
8 sign	al regions		m _{ee}	_	[75 - 105]	_
- 0 sigi	lai regions		$p_{T}(j_1)$	> 30	> 20	> 60
• 0 1	2 lonton acto	CO1100	$p_{\mathrm{T}}(j_2)$	> 30	> 20	> 30
• 0, 1	, 2 repton cate	gones	$p_{\rm T}(jj)$	> 120	[80 - 150] (< 250)	> 130
Lor	wand high n (V) hing	$n_{T}(\mathbf{y})$	[120 - 170] (> 170)	[50 - 100] (> 100)	250
• LOV	v and mgn p_{T}	v) UIIIS	CSVmax	> 0.40	> 0.50 (> 0.244)	> 0.679
			CSVmin	> 0.40	> 0.244	> 0.244
• Star	ndard and loos	e b-tagging	CSV ^{loose}	- (< 0.40)	-	- (< 0.244)
lin	0.1. lonton hig	hn	N _{al}	= 0	5.00	= 0
	o, r iepion, ing	пр _т)	$E_{\rm T}^{\rm miss}$	> 45 (elec)	-	[130 - 170] (> 170)
		1	$\Delta \phi(E_T^{miss}, jet)$	5 .0 70		> 0.5
DDT :			$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}(\mathrm{trks})})$	-	-	< 0.5
BDT Input va	ariables		$\Delta \phi(V, H)$		<u> </u>	> 2.0
р _{тј}	transverse momentum of	f each Higgs daughte	er		iveriete c	
m(jj)	dijet invariant mass				Ivallate a	illarysis
р _т (jj)	dijet transverse momente	um		• Bo	osted Deci	sion Tree
p _T (V)	vector boson transverse i	momentum (or E _T ^{miss}	⁵)		DT) mothe	31011 11 00
CSV _{max}	b-tag disc. value for Higgs	daughter with large	est value		DI) metho	u
CSV _{min}	b-tag disc. value for Higgs	s daughter with seco	ond largest value	Mo	ost discrimi	nating
Δφ(V, Η)	azimuthal angle between	V (or E _T ^{miss}) and dije	et	vai	riables: may	ss n h-tag
∆ŋ(jj)	difference in η between H	liggs daughters				$p_{\mathrm{T}}, p_{\mathrm{T}}, p_{T$
∆R(jj)	difference in η-φ betwee	n Higgs daughters		jet	veto	
N _{aj}	number of additional jets	;				
$\Delta \varphi(E_T^{miss}, jet)$	azimuthal angle between	E _T ^{miss} and closest je	t (only for Z(vv)H)			

 $\Delta \theta_{pull}$

color pull angle

CMS

Background control regions

	1
L	P

• Single-top and	5-	+5 regions	in 0-leptc	on $low + h$	igh p _T cha	nnels
dibosons from MC	Variable	Z+LF	Z+HF	tī	W+LF	W+HF
	$p_{\mathrm{T}}(j_1)$	> 60	> 60	> 60	> 60	> 60
• QCD multijet	$p_{\mathrm{T}}(j_2)$	> 30	> 30	> 30	> 30	> 30
considered negligible	$p_{\rm T}(jj)$	> 130	> 130	> 130	> 130	> 130
	$p_{\rm T}(V)$	-	-	-	-	-
• Other backgrounds	CSV _{max}	[0.244 - 0.898]	> 0.679	> 0.898	[0.244 - 0.898]	> 0.679
shape from MC and	N_{ai}	-	- 0.244	≥1	= 0	= 0
normalization from fi	N_{al}	= 0	= 0	= 1	= 1	= 1
	$U E_T^{miss}$	[130 - 170](> 170)	[130 - 170](> 170)	[130 - 170](> 170)	[130 - 170](> 170)	[130 - 170](> 170)
variables in control	$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})$	> 0.5	> 0.5	> 0.5	> 0.5	> 0.5
ragiona (CP)	$\Delta \phi(E_T^{miss}, E_T^{miss}^{(trks)})$	< 0.5	< 0.5	-	-	-
regions (CK)	m(jj)	< 250	veto [100 - 140]	veto [100 – 140]	< 250	veto [100 – 140]

Also: 3+3 regions in 1-lepton low + high p_{T} channels; 2 regions in 2-lepton channels

Maneira (LIP)

Associated Higgs Production

Uncertainties

Background scale factors from fit: W/Z+b, W/Z+light, tt

Process	$W(\ell \nu)H$	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$	$Z(\nu\nu)H$
Low $p_{\rm T}$	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	8 TeV
W + udscg	$0.88 \pm 0.01 \pm 0.03$	$1.01 \pm 0.02 \pm 0.01$	-	-	$0.89 \pm 0.01 \pm 0.03$	$0.96 \pm 0.06 \pm 0.03$
Wbb	$1.91 \pm 0.14 \pm 0.31$	$2.07 \pm 0.15 \pm 0.10$	-	-	$1.36 \pm 0.10 \pm 0.15$	$1.30 \pm 0.17 \pm 0.10$
Z + udscg	-	-	$1.11 \pm 0.03 \pm 0.11$	$1.10 \pm 0.02 \pm 0.06$	$0.87 \pm 0.01 \pm 0.03$	$1.15 \pm 0.07 \pm 0.03$
Zbb	-	-	$0.98 \pm 0.05 \pm 0.12$	$1.08 \pm 0.04 \pm 0.08$	$0.96 \pm 0.02 \pm 0.03$	$1.12 \pm 0.10 \pm 0.04$
tŦ	$0.93 \pm 0.02 \pm 0.05$	$1.07 \pm 0.01 \pm 0.01$	$1.03 \pm 0.04 \pm 0.11$	$1.01 \pm 0.02 \pm 0.06$	$0.97 \pm 0.02 \pm 0.04$	$1.05 \pm 0.07 \pm 0.03$
High $p_{\rm T}$	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	8 TeV
W + udscg	$0.79 \pm 0.01 \pm 0.02$	$0.94 \pm 0.02 \pm 0.01$	-	-	$0.78 \pm 0.02 \pm 0.03$	$0.95 \pm 0.05 \pm 0.02$
Wbb	$1.49 \pm 0.14 \pm 0.19$	$1.72 \pm 0.16 \pm 0.08$	-	-	$1.48 \pm 0.15 \pm 0.20$	$1.27 \pm 0.18 \pm 0.10$
Z + udscg	-	-	$1.11 \pm 0.03 \pm 0.11$	$1.10 \pm 0.02 \pm 0.06$	$0.97 \pm 0.02 \pm 0.04$	$1.04 \pm 0.07 \pm 0.02$
Zbb	-	-	$0.98 \pm 0.05 \pm 0.12$	$1.08 \pm 0.04 \pm 0.08$	$1.08 \pm 0.09 \pm 0.06$	$1.15 \pm 0.10 \pm 0.04$
tt	$0.84 \pm 0.02 \pm 0.03$	$0.99 \pm 0.01 \pm 0.01$	$1.03 \pm 0.04 \pm 0.11$	$1.01 \pm 0.02 \pm 0.06$	$0.97 \pm 0.02 \pm 0.04$	$1.03 \pm 0.07 \pm 0.03$

Results

Events/20 GeV

VH ATLAS Mbb

$150,160 < p_{T}(V) < 200 \text{ GeV}$

Showing only the two highest p_{T} bins

Events/20 GeV

$p_{_{\rm T}}(V) > 200 {\rm ~GeV}$

No significant excess is found.

Associated Higgs Production

SM@LHC2013 16

CMS VH BDT

Maneira (LIP)

Associated Higgs Production

SM@LHC2013

17

WZ/ZZ cross-check

CMS: excess

SM Higgs

compatible with

- WZ, ZZ production, with $Z \rightarrow bb$
 - Similar signature, cross-section 5x higher
 - Separate fit to validate the WH analysis
 - Individually for 0, 1, 2 lepton channels
 - All backgrounds except VH are subtracted o

 $\sigma/\sigma_{SM} = \mu_D = 1.09 \pm 0.20$ (stat) ± 0.22 (syst). The significance is 4.0 σ

Maneira (LIP)

Associated Higgs Production

SM@LHC2013

	7 TeV	8 TeV	Reference		
ATLAS	4.7 fb ⁻¹		ATLAS-CONF-2012-135		
CMS	5.0 fb ⁻¹	5.1 fb ⁻¹	CERN-PH-EP-2013-027		
!Still not the full 8 TeV dataset! (~21 fb ⁻¹)					

ttH Overview

- Associated production with two top quarks • Up to 4 b-tagged jets • Lepton (e or μ) + jets channel 1 lepton + MET + up to 2 additional jets0 • Di-lepton (e or μ) channel (CMS only) g 00000 • 2 leptons + MET + 0 additional jets Η Search strategy 00000 • Signal and background regions defined **g** according to number of jets and b-tags Backgrounds: tt+jets, combinatorial ATLAS: decay into bb only • CMS: allow other decays
 - but contribution from H→bb in the most sensitive categories is 95%

Directly probe strongest Yukawa coupling

ttH Backgrounds

ttH analysis

- Kinematic maximum likelihood fit
 - Find the most likely assignment of jets to build the 2 top masses
 - Remaining b-jets assigned to Higgs (26% prob. to assign correct bjet pair, with 4 b-tags)

Simultaneous fit to signal and background regions

• Discriminating variables: Mbb and H_{T}^{had} (scalar sum of jets' pT)

- Artificial Neural Network (ANN)
 - From 9 variables
 - CSV (b-tag), kinematics, etc...
 - Output is discriminant variable

Systematic uncertainty	Status	Components
Luminosity	N	1
Lepton ID+reco+trigger	N	1
Jet vertex fraction efficiency	N	1
Jet energy scale	SN	16
Jet energy resolution	Ν	1 📕
b-tagging efficiency	SN	9
c-tagging efficiency	SN	5
Light jet-tagging efficiency	SN	1
<i>tī</i> cross section	N	1
$t\bar{t}V$ cross section	N	1
Single top cross section	N	1
Dibosons cross section	N	1
V+jets normalisation	N	3
Multijet normalisation	N	7
W+heavy-flavour fractions	SN	4
<i>tī</i> modelling	SN	3
$t\bar{t}$ +heavy-flavour fractions	SN	1
tīH modelling	Ν	1

ATLAS

- Main source: tt + heavy flavor (50% unc.)
- Breakdown in components for btag (9), ctag (5), jet energy scale (16), background normalization and modeling
 - avoid over-constraining nuisance parameters

Systematics

CMS

• no QCD uncertainty

• tighter jet selection

Source	Rate Uncertainty	Shape
Luminosity (7 TeV)	2.2%	No
Luminosity (8 TeV)	4.4%	No
Lepton ID/Trig	4%	No
Pileup	1%	No
Additional Pileup Corr.	-	Yes
Jet Energy Resolution	1.5%	No
Jet Energy Scale	0-60%	Yes
b-Tag SF (b/c)	0-33.6%	Yes
b-Tag SF (mistag)	0-23.5%	Yes
MC Statistics	-	Yes
PDF (gg)	9%	No
$PDF(q\overline{q})$	4.2-7%	No
PDF (qg)	4.6%	No
QCD Scale (ttH)	15%	No
QCD Scale (tt)	2–12%	No
QCD Scale (V)	1.2-1.3%	No
QCD Scale (VV)	3.5%	No
Madgraph Scale (tt)	0–20%	Yes
Madgraph Scale (V)	20-60%	No
$t\overline{t} + b\overline{b}$	50%	No

ttH Results

ttH results

. Maneira (LIP)

Associated Higgs Production

Conclusions

- ATLAS & CMS searches for Hbb
 - Diboson WZ/ZZ: observed peak with 4σ significance
 - VH: sensitivity @125 GeV close to SM. CMS sees 2.2σ excess
 - ttH: sensitivity @125 GeV 5x SM, setting limits.
- Results with increased significance expected soon
 - None of the Hbb analysis has used the full 2012 dataset yet
 - ATLAS & CMS working on analysis improvements

Acknowledgments

<u>Acknowledgments:</u> Portuguese participation in ATLAS funded by FCT project CERN/FP/123595/2011

Extra slides

B-jet tagging

ATLAS-CONF-2012-043 ATLAS-CONF-2012-161 CMS PAS HIG-12-044

ATLAS VH event yields

	0-lepton, 2 jet 0-lepton, 3 jet			1-lepton				2-lepton								
Bin	$E_{\rm T}^{\rm miss}$ [GeV]					$p_{\rm T}^{\rm W}[{\rm GeV}]$				$p_{\rm T}^{\rm Z}[{\rm GeV}]$						
	120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
Тор	89	25	8	92	25	10	1440	2276	1120	147	43	230	310	84	3	0
W + c, light	30	10	5	9	3	2	580	585	209	36	17	0	0	0	0	0
W + b	35	13	13	8	3	2	770	778	288	77	64	0	0	0	0	0
Z + c, light	35	14	14	8	5	8	17	17	4	1	0	201	230	91	12	15
Z + b	144	51	43	41	22	16	50	63	13	5	1	1010	1180	469	75	51
Diboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
Multijet	3	1	1	1	1	0	890	522	68	14	3	12	3	0	0	0
Total Bkg.	361	127	- 98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
	± 29	± 11	± 12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	± 14	± 90	± 110	± 47	± 12	± 12
Data	342	131	90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

ttH signal variables

QCD data-driven details

• Di-Boson:

Shape and normalisation from MC

- QCD Multi-jet: Data driven methods
 - 0 lepton: ABCD method using
 - $Min[\Delta \Phi(E_T^{miss}, jets)]$ and $\Delta \Phi(E_T^{miss}, p_T^{miss})$
 - 1 lepton: inversion of lepton isolation and template fits to missing E_τ
 - 2 lepton: loosen lepton ID, inversion of lepton isolation: fit to m
- Other backgrounds: Shape from MC, normalisation from fits in control regions

CMS Mbb cross-check

т _н = 125 GeV	7 TeV	8 TeV	7 TeV + 8 TeV
Expected Cl _s limit	3.3	2.5	1.9
Obs. Cl _s limit	1.8	3.4	1.8
μ (σ/σ _{sm})	-2.7 ± 1.1 ± 1.1	1.0 ± 0.9 ± 1.1	-0.4 ± 0.7 (stat.) ± 0.8 (syst.)

ttH comparison pre/post fit

No significant excess found.

Associated Higgs Production