Top-Quark Pair Production at LHC

María Aldaya (for the ATLAS and CMS collaborations)

DESY - University of Hamburg

Standard Model @ LHC, Freiburg, 9 – 12 April 2013

- Introduction
- Top-quark pair cross sections
- Differential top-quark pair cross sections
- Measurements of tt+ (b-)jets, W, Z, γ

All top quark physics results are available here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Top quark production

- Top quarks: key to QCD, electroweak (EWK) and new physics
 - Large mass \rightarrow large coupling to Higgs (y ~ 1)
 - Sensitive to Higgs mass through EWK loop corrections
 - Decays before hadronising: "bare" quark
 - New physics may preferentially couple/decay to top
 - Major source of background for many searches

→ Tool for precise tests of Standard Model (SM), sensitive probe to New Physics

• LHC is a 'top factory': several million tr events produced at 7 & 8 TeV !!

- \bullet Great opportunity to study the details of $\bar{t\bar{t}}$ production mechanisms
 - In particular, through top-quark kinematic distributions
- Production of t in association with QCD jets or additional particles could reveal new physics ; background to tt and beyond SM searches
- Theory predictions & models need to be tuned & tested with measurements

Top-pair production and decay

• ft production dominate	d by gluon fu	sion at LF	HC (~90%)				
as tax		9		t		LHC (7TeV)	Tevatron
				g g	~80%	~15%	
g 🚳 🔰 t g T	\overline{t}	ą		ī	qq	~20%	~85%
Full NNLO calculation	Collider	$\sigma_{ m tot}~[m pb]$	scales [pb]	pdf [r	ob]		
now available (gg→tt) !	Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%) [Czakon ,		, Fiedler,	
NNLO+NNLL very precise:	LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4\%)	+4.7(2.) -4.8(2.)	7%) 8%)	Mit arXiv:13	ov, 03.6254 1
2.2% (Tevatron) ~ 3% (LHC)	LHC 8 TeV	245.8	$+6.2(2.5\%) \\ -8.4(3.4\%)$	+6.2(2.) -6.4(2.)	5%) 6%)		10101011

• In SM, t \rightarrow W⁺b (~100%) \rightarrow W decay modes define top final states

$\sigma(t\bar{t})$ measurements at Tevatron

First Tevatron combination !

- CDF (up to L = 8.8 fb⁻¹): (6.5%) $\sigma_{tt} = 7.71 \pm 0.31 \text{ (stat)} \pm 0.40 \text{ (syst) pb}$
- D0 (L = 5.4 fb⁻¹): (8%) $\sigma_{tt} = 7.56^{+0.63}_{-0.56}$ (stat+syst+lumi) pb
- Tevatron combined: (5.5%)

 $\sigma_{tt} = 7.65 \pm 0.20 \text{ (stat)} \pm 0.36 \text{ (syst) pb}$

 $\begin{array}{ll} \mbox{Theory: NNLO+NNLL} & \mbox{[arXiv:1204.5201]} \\ \mbox{(approx. NNLO+NNLL for gg)} \\ \mbox{σ_{tt}} = 7.24 \ ^{+0.24} \ _{-0.27} \ pb & \mbox{(4\%)} \\ \mbox{Full NNLO+NNLL:} \end{array}$

 $\sigma_{tt} = 7.164^{+0.110}_{+0.169} - 0.200 \text{ (scales)}_{-0.122} \text{ (pdf) pb} \quad \textbf{(2.2\%)}$

Main systematics: signal modelling, jet reconstruction

PLB 604 (2011) 403 D0 Note 6363 CDF Note 10926

and with SM predictions

M. Aldaya

CMS Preliminary, √s = 7 TeV

- Measurements from likelihood fits (traditionally from counting)
- Data-driven estimates for main backgrounds
 - QCD. W+iets. Z+iets. ...

DES

(up to 1.1 fb⁻¹): (8%)

 ± 10.6 (syst)

 165.8 ± 2.2 (stat)

M. Aldaya

SM@LHC, 11.04.13

Summary of $\sigma(t\bar{t})$ results vs. \sqrt{s}

9

Differential tt cross sections

 $\mathrm{d}\sigma_{\mathrm{t}ar{\mathrm{t}}}$

dX

10

 $\sigma_{
m t\bar t}$

Measure top quark kinematic distributions

top, top pairs, (b)-jets, leptons, lepton pairs, E_T^{miss} , ...

- Scrutinise theory predictions & models
- Enhance sensitivity to new physics
- Extract/use for PDF fits (future)
- Main analysis ingredients:
 - cross section measurement
 - $\ensuremath{\bullet}$ kinematic reconstruction of $\ensuremath{t\bar{t}}$ system
 - correct for detector effects & acceptance (unfolding)
- Visible or extrapolated to full phase space
- Corrected to parton or particle level
- Normalized to inclusive σ(tt̄) in corresponding phase space
 - Only shape uncertainties contribute

M. Aldaya

SM@LHC, 11.04.13

Jet multiplicity in tt(+jets) events

LHC: high fraction of $t\bar{t}$ events with extra hard jets from initial (final) state radiation

- Tune & test radiation modelling in MC with measurements
- Important for top, Higgs and many BSM studies

- Compare N_{jets} (ATLAS) and $1/\sigma_{tt} d\sigma_{tt}/dN_{jets}$ (CMS) to ME+PS and NLO generators
 - Corrected to particle level, presented in the visible phase space

Associated tt + bb production CMS-PAS TOP-12-024

Test pQCD calculations ; irreducible, non-resonant bg for ttH(bb)

- Predictions have large uncerts (scales)
- Measure ratio σ(ttbb)/σ(ttjj)
 - \rightarrow large cancellation of uncertainties
- Dilepton events with ≥ 4 jets, ≥ 2 b-tags
- Signal extraction by fit to the b-jet multiplicity
- σ ratio at particle level in visible phase space:

$\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 3.6 \pm 1.1(\text{stat.}) \pm 0.9(\text{syst.})\%$

In agreement with predictions:

MadGraph: 1.2% Powheg: 1.3%

Statistically limited

Main syst: mistag efficiency

b-Jet Multiplicity (CSVM)

Associated tt̄ + W/Z/γ production

Measure top couplings to bosons ; important bgs for BSM searches

tt+γ ATLAS-CONF-2011-153

- I+jets evts with ≥ 4 jets, 1 btag, 1 photon
- Likelihood fit to photon isolation

 $\sigma_{t\bar{t}\gamma} \cdot BR = 2.0 \pm 0.5 \text{ (stat.) } \pm 0.7 \text{ (syst.) } \pm 0.08 \text{ (lumi.) pb}$

(extrapolated to $p_T(\gamma) > 8$ GeV in I+jets & dileptons)

- <mark>2.7</mark> (exp. 3.0 ± 0.9)
- Consistent with SM (2.1 ± 0.4 pb)

Summary & outlook

- The LHC has become a real "top factory"
 - Increasing precision on inclusive tt cross section, competing with theory
 - First round of top-pair differential cross section measurements
 - Measurements of $t\bar{t}$ +X, where X = (b-)jets, W, Z, γ , ...
- So far, good agreement with SM
- Larger samples of 8 TeV data (~20 fb⁻¹) will allow for even more precise measurements
 - Trade off statistics for systematics
 - Validate MC models & parameter variations
 - Compare with (N)NLO predictions
- Prospects for new type of measurements?
 - Cross section ratios 8/7 TeV and double ratios $\ensuremath{t\bar{t}/Z}$
 - Measurements in visible phase space, particle level
 - \rightarrow definition of top quark at particle level

Mangano, Rojo, arXiv:1206.3557, Czakon et al., arXiv:1303.7215

Additional information

Top quark mass from $\sigma(\bar{t}t)$

Mass dependence of predicted cross section allows determining m_t from measured σ_{tt}

- \rightarrow provides top mass in unambiguous definition
- Extract pole and MS mass from measured cross section in dileptons

Good agreement between different calculations Results consistent also with other experiments

Precision limitations:

Syst. uncert. of the measurement
PDF uncert. + αs uncert. in the PDF

• ATLAS & CMS combination (up to L = 1.1 fb⁻¹)

• Use individual ATLAS, CMS combinations as input

$$\sigma_{tt} = 173.3 \pm 2.3 \text{ (stat)} \pm 9.9 \text{ (syst) pt}$$

Full NNLO+NNLL: (5.8%)

$$\sigma_{tt} = 172.0^{+4.4}_{+4.7}$$
 (scales)
 -4.8 (pdf) pb (~3%)

- First step in discussion towards harmonising systematics treatment
 - So far, differences in treatment of e.g. signal model uncertainties

Main systematics: luminosity, detector & signal modelling

Improvements expected with new measurements: more statistics, better luminosity syst.

NB: not using latest measurements based on full dataset

Good agreement between experiments and with SM predictions

	ATLAS	CMS	Correlation	LHC combination
Cross-section	177.0	165.8		173.3
Uncertainty				
Statistical	3.2	2.2	0	2.3
Jet Enegy Scale	2.7	3.5	0	2.1
Detector model	5.3	8.8	0	4.6
Signal model				
Monte Carlo	4.2	1.1	1	3.1
Parton shower	1.3	2.2	1	1.6
Radiation	0.8	4.1	1	1.9
PDF	1.9	4.1	1	2.6
Background from data	1.5	3.4	0	1.6
Background from MC	1.6	1.6	1	1.6
Method	2.4	n/e	0	1.6
W leptonic branching ratio	1.0	1.0	1	1.0
Luminosity				
Bunch current	5.3	5.1	1	5.3
Luminosity measurement	4.3	5.9	0	3.4
Total systematic	10.8	14.2		9.8
Total	11.3	14.4		10.1

Signal modelling uncertainties

• ATLAS:

- generator: MC@NLO vs Powheg (vs Alpgen for recent results)
- shower model: Powheg+Pythia vs Powheg+Herwig
- ISR/FSR: ACER+Pythia with more/less radiation
- PDF
- CMS:
 - Q² variation in Madgraph
 - ME-PS matching
 - MC tune (for some analyses)
 - PDF

Aplanarity: smallest eigenvalue of M_{ii}

$$M_{ij} = \frac{\sum_{k=1}^{N'_{objects}} p_{ik} p_{jk}}{\sum_{k=1}^{N'_{objects}} p_k^2},$$

Systematic uncertainties (%):

Source	$e + \geq 3$ jets	$\mu + \geq 3 jets$	combined
Jet/MET reconstruction, calibration	6.7, -6.3	5.4, -4.6	5.9, -5.2
Lepton trigger, identification and reconstruction	2.4, -2.7	4.7, -4.2	2.7, -2.8
Background normalization and composition	1.9, -2.2	1.6, -1.5	1.8, -1.9
b-tagging efficiency	1.7, -1.3	1.9, -1.1	1.8, -1.2
MC modelling of the signal	±12	±11	±11
Total	±14	±13	±13

Luminosity: 3.6 %

More info: diff cross sections @ ATLAS

- I+jets channel: 1 isolated $\mu(e) p_T > 20$ (25) GeV ; ≥ 4 jets ($p_T > 25$ GeV, $|\eta| > 2.5$), ≥ 1 b-tag ; $E_T^{miss} > 20$ (30) GeV, $m_T(W) > 60$ (25) GeV E_T^{miss}
- tt kinematic reco using a likelihood fit of the measured objects to a theoretical LO representation of the tt decay

M. Aldaya

25

SM@LHC, 11.04.13

- Determined individually for each bin of the measurement
- Normalized cross sections: only shape uncertainties contribute, correlated uncertainties cancel

	Source	Method	Systematic uncertainty (%)		
			ℓ+jets	dileptons	
Experimental	Background	vary with 30%-50%	3.5	0.5	
	Trigger eff.	p_{T} - η dependent	0.5	1.5	
	Lepton sel.	p_{T} - η dependent	0.5	2.0	
	Jet energy scale	p_{T} - η dependent	1.0	0.5	
	Jet energy resolution	$p_{\rm T}$ - η dependent	0.5	0.5	
	Pileup	vary $\sigma_{\text{inel.}}(\text{pp}) \pm 8\%$	0.5	0.5	
	b tagging	p_{T} - η dependent	1.0	0.5	
Model	Kinematic reco	p_{T} - η dependent	-	0.5	
	Q^2	vary factor 0.25-4	2.0	1.0	
	ME/PS threshold	vary factor 0.5-2	2.0	1.0	
	Hadronisation	PYTHIA vs. HERWIG	2.0	2.0	
	Top-quark mass	172.5 ± 0.9	0.5	0.5	
	PDF choice	PDF4LHC	1.5	1.0	

Typical values per bin at 7 TeV

M. Aldaya

More info: 1/σ dσ/dX @ CMS – Kin reco

Lepton + jets: Kinematic fit

- vary measured 4-momenta for lepton, jets and neutrino
- to fullfil constrains:

- $-m_t \equiv m_{\bar{t}}$
- neutrino: E_t^{miss}, p_z unmeasured as initial value
- consider 5 leading jets
- use b-tag information for b-jet association
- choose permutation with lowest variation wrt. object resolution (minimum χ²)

Dilepton: Kinematic reco (~MWT)

- underconstrained (2 neutrinos)
- constraints:

- $-m_t = m_{\bar{t}} = fixed$
- $p_{v1}(x,y) + p_{v2}(x,y) = E_t^{miss}(x,y)$
- vary m, (1 GeV steps): 100 300 GeV
- prefer solutions with b-tagged jets
- choose solution with best reconstructed neutrino energy wrt. MC spectrum

More info: gap fraction (ATLAS)

SM@LHC, 11

Also as a function of Q_{sum}:

 $F(Q_{sum})$: fraction of evts in which the scalar p_T sum of all additional jets is below a certain threshold

Gap fraction vs. different generators:

 \bullet General good agreement between data and predictions for the full η range

Gap fraction vs. Alpgen
 +Pythia varied α_S value in ME
 (→ ISR/FSR variation): x 2, x 0.5:

- $\alpha_{\text{S}}_\text{up}$ variation seems to be disfavoured by data

More info: gap fraction (CMS)

Also as a function of H_T:

 $f(H_{T})$: fraction of evts in which the scalar p_{T} sum of all additional jets is below a certain threshold

- Gap fraction vs. different generators:
 - General good agreement between data and predictions for the full n range
- Gap fraction vs. MadGraph varied scales:
 - Higher Q² seems to describe data better
 - Experimental precision smaller than spread due to parameter variation
 - \rightarrow variations could be significantly reduced

M. Aldaya

M. Aldaya

SM@LHC, 11.04.13

Towards a definition of top quark at particle level

- A distinctive property of the top quark is that it decays before hadronisation
- Nevertheless, the measurements of the top quark cross-section in a visible phase space is defined by parton-level quantities
- Extrapolation to the these quantities is thus inherently model and scheme dependent
- Common effort between ATLAS, CMS and theory to come up with a unified experimental top quark definition at particle level
- Select events at particle level consistent with the top quark lepton + jets final state:
 - 1 lepton, ≥4 jets (p_T > 25 GeV |η| < 2.5), 2 of which must be matched to bhadrons.
- Then build pseudo-top quark vectors from simple algorithm:
 - Hadronic W boson from two jets closest in ΔR .
 - Leptonic W boson from lepton and sum of neutrinos.
 - Build hadronic top from hadronic W boson and b-jet combination which best matches the top mass.
 - Leptonic top then built from leptonic W boson plus remaining b-jet.
- Major difference to 'traditional' top reconstruction no attempt to correct back to parton level.
- Definition very close to objects measured in detector good candidate for unfolded measurements at hadron level.

First proposal by ATLAS for top quark in the I+jets final state

(open TOPLHC working group meeting Nov12, slide from M. Owen)

DESY