Monitoring and Reporting for Gridengine

Wolfgang Friebel April 16, 2013

Contents

- Motivation
- > Existing solutions
- Data sources
 - •Accounting and reporting
 - Monitoring
- Monitoring and accounting at DESY
 - Used tools
 - Performance considerations
 - Privacy
 - Improvement plans
- Summary

Motivation

- Several batch farms in use at DESY (Bird, NAF, Parallel Farm, ...)
 - Need to watch proper function and optimal utilization of the farms
- Several projects compete on the same farm for resources
 - Need to check actual usage of the farm in accordance to the plans
 - Need to check that hardware contributions of projects get properly used
 - Need to verify that the batch system cannot be tricked out
- Resources are precious and need to be optimally used
 - Need to check that users tune their jobs to not waste resources
- Users need to know the status of their waiting, running and ended jobs
 - •Frequent queries for the job status affect the scheduling process
 - Interpretation of the raw numbers (e.g. in units of GB*s) and error codes difficult

Existing solutions

- Accounting and reporting
 - Commercial solutions
 - ARCO (Accounting and reporting console based on accounting/reporting files)
 - Unisight (for accounting/reporting, comes with UNIVA Gridengine, uses warehouse techniques)
 - Open source programs
 - Solutions using the ARCO database component (dbwriter) were reported on past GE meetings
 - Generic solutions in the grid context
- Monitoring
 - Commercial solutions
 - Unisight seems to allow monitoring of values reported by ghost (see later)
 - Open source programs
 - Xml-qstat (web based monitoring based on qstat)
 - Several scripts that summarize qstat information and produce text output

Monitoring and accounting at DESY

- No satisfactory open source solution found
 - Is maybe to trivial and everybody is having a home grown solution?
- Commercial solution not appropriate for us
 - Not useable for other batch systems in use (e.g. Torque, Son of GridEngine)
 - Does not fully cover job monitoring (to my opinion)
 - Is fairly complex

> A DESY approach

- Existing since several years, served only the immediate needs
- Small CGI program and a simple database in the beginning
- •Tried to improve and enhance the solution, but lack of manpower
- •Recently new concepts being tried (see talk of Th. Finnern)

Data sources for accounting

- > File "accounting"
 - Written by gridengine on termination of jobs
 - Contains approx 45 variables characterizing a job (content did vary with GE version)
 - Interpretation of variable values not always straightforward (mem in GB*s, counting of cpu and wallclock time for parallel and array jobs, error codes)
- > File "reporting"
 - Not written by default, its generation needs to be configured
 - Contains in addition to information above also records for submitted and started jobs
 - Further information recorded not easily useable for monitoring/accounting
- Usage of these data
 - •File accounting not suitable for monitoring, as info is available at job end only
 - •File reporting has limited use for monitoring, almost no info for running jobs
 - •These files are the only source of information for ARCO and Unisight

Data sources for monitoring

- Number of machines, cores available, load values and consumables
 - Output of the qhost command
- Summary of running jobs per queue
 - Output of qstat -g c (for quick checks only)
- Detailed information on running and waiting jobs
 - Output of qstat -f -s a -t -ext -xml
 - •XML output can be easily parsed, very slow if huge number of jobs waiting
 - Better separate calls for running jobs and waiting/hold ... jobs (option -s)
 - Does provide also information on cpu usage, I/O, memory consumption
 - •CPU values scaled with cpu_scaling parameter if set, available from qconf -se exechost

Gridengine accounting at DESY (conventional ansatz)

- Typical farm throughput O(10.000.000) jobs/year per farm
 - *Job results (45 parameters) get written to a (mysql) DB (1 record/job) and deleted from accounting file (faster qstat calls, but few results for ended jobs)
 - Results are kept for > 1 year in DB
 - •Accounting is based on querying this DB, mostly used for summary information
 - •Fraction of farm used by a given project during a time period (last day, .. last year etc.)
 - •Information is displayed using pie charts (see title page) or bar charts
 - User information is by default anonymous, can be displayed for admins
 - Plots useful for capacity planning and controlling project shares

Displaying accounting information

- For users recent farm usage (globally or by project) most useful
 - •Number of waiting and running jobs over time to estimate job waiting time
 - Waiting and running jobs by project to see activity periods of projects
 - Ratio of CPU/wallclock time to estimate efficiency of jobs
 - ...
- Extraction of these parameters from DB on request nearly impossible
 - •Have one table with huge number of entries, queries even with indexing too slow
 - Would need more intelligent storage of job data optimized for fast retrieval
 - •We fill the job data in addition into round robin databases (RRD)
 - Is done incrementally
 - Does no longer hold data for individual jobs but data aggregated by user, project, ...
 - Is less precise for historical data, holds data for a time period of one year
 - Plots can be generated very quickly from these rrds

Examples of RRD plots

> Running and waiting jobs

Running jobs by group

Gridengine monitoring at DESY

- > Current focus on providing job information for users
- Monitoring the batch farm to see the health of the system done differently
- Start with summary information for given user per day
- Continue with listing of all jobs on a given day

Monitoring individual jobs

- All parameters of a job get displayed
- Error codes are translated into human readable form
- All tasks of array jobs and parallel jobs can be displayed individually

n	variable	value
0	qname	30min.q
1	hostname	bladef5.ifh.de
2	unixgroup	alpha
3	owner	
4	job_name	diagram04T36_x018_z1
5	job_number	9530207
6	submission_time	Wed Feb 27 09:25:54 2013
7	start_time	Wed Feb 27 12:14:01 2013
8	end_time	Wed Feb 27 12:44:10 2013
9	failed	failure after job (100)
10	exit_status	killed by signal XCPU (24), exit_status=152
11	ru_wallclock	1809
12	ru_utime	1788
	ru_stime	15
14	ru_minflt	24704
15	ru_majflt	49
16	ru_inblock	9152
17	ru_oublock	312
18	ru_nvcsw	2153
19	ru_nivcsw	183807
	project	alpha
21	granted_pe	NONE
22	slots	1
23	task_number	0
24	сри	1803
25	mem	590.767
	category	-l arch=x86_64,cores=1,h_stack=10M,h_vmem=1G,os=sl6,tmpdir_size=1G
27	pe_taskid	NONE
28	maxvmem	654316kB

Monitoring of still running jobs

- Currently only details for finished jobs are displayed
 - No information on varying resource usage during job execution
- Database change to collect data for running jobs
 - Adding a table holding the job parameters for running (and recently finished) jobs
 - •Recording parameters every 5 minutes for all running jobs in a DB table
 - Info gets deleted after a few (3) days to limit size of the table
- New table allows to display status of running jobs
 - In addition history of resource usage since start of job
 - Is done also for recently finished jobs
 - Valuable info for users to better understand how the jobs perform
- Code ready for simple jobs
 - No plots yet, but planned, if job runs for more than 1 hour
 - Not ready yet for array jobs and parallel jobs

Performance considerations

Database design

- *All values from accounting entered in DB, several values always constant or of limited use
- Shrinking the DB would result in increased speed
- Job details are usually only important for a limited time, store job summaries instead
- Store even less information for older data (like in RDDs)

Database changes

- •New tables storing summary information in 5 minute intervals
- •Quantities CPU time, runtime, memory and I/O usage by user, project, host and queue
- Cron job to replace fine grained summaries by more coarse grained ones for older data

Generation of plots

- Plots need to be regenerated in regular intervals to show the images instantly
- Not required for RRDs, generation of RRD graphs is fast

Privacy

- Batch system information (qstat, qhost,...) accessible without restriction
- Accumulated data can show trends, user behavior etc.
- Decision to let users view only their own jobs
- Decision to hide user names for top n user plots
- Definition of group and global administrators who can see all data
 - •Jobs of users within same group
 - User names within plots

Integration of other batch systems

- Torque does provide reporting files similar to GridEngine
 - Torque is used in our Grid cluster
 - •We process the reporting file and put the data in tables (almost) identical to GE tables
 - •The same scripts are then used to fill RRDs and display plots
- We do not have a mechanism in place yet to monitor current jobs
 - Would be in analogy to calling qstat (collecting data from running jobs)
 - Data would again go into tables compatible with GE tables
 - Display of running Torque jobs would then be covered by existing scripts
- Integration of systems other than Torque would require similar steps
 - Create and fill tables for ended and running jobs
 - Need to make sure same quantities in same units get recorded

Improvements

- > Improved monitoring script is in testing phase
 - Added a top page summarizing the status of the farms

- •Includes monitoring of running jobs
- •Allows to fix the color mapping for projects appearing in plots
- Still issues with speed of DB queries and display of running array or parallel jobs
- No integration of Torque (GRID farm) yet

Next steps

- Check consistency between data from qstat and accounting records
- Backfill tables from accounting data, if qstat info is missing
- Optimize DB design to speed up queries
- Make the monitoring more robust and production ready

> Look into new paradigms to store and display data

> Try to look for partners who are willing to contribute

Summary

- An accounting and monitoring system for GE is in place at DESY
- Several shortcomings and bottlenecks exist in the present solution
 - •ARCO and Unisight cannot cover all of our use cases
 - A new concept using Splunk is being tried (see next talk)
- Improvements to the current traditional solution are planned
- Collaborators welcome

