
Andrea	
 Do*	
 (andrea.do*@cern.ch)

First experiences
with G4MT prototype

mailto:andrea.dotti@cern.ch
mailto:andrea.dotti@cern.ch

2

Goals

Large experiments are investigating task-based
parallelism for their software framework

TBB looks particularly promising

Geant4-MT capabilities will be embedded in Geant4
Version 10 (Dec. 2013)
We need to be sure that G4MT can be
used in these (parallel) frameworks
We need to answer few questions:

Is G4MT “compatible” with such frameworks?
Are changes to G4 code needed?
Can we provide a simple TBB-based application as an example?

Outlook

Introduction
G4MT working model: a reminder

First experiences with TBB
Requirements
Some details
A simple TBB based application (ParN02tbb)

Conclusions

3

G4MT: reminder

4

5

G4MT is a effort in two directions:
Make the relevant classes in Geant4 thread-safe
Provide a G4MTRunManager that implements event-level parallelism

Simple applications can use directly G4MTRunManager
Complex ones will do as they always did: write/subclass their own
run-manager

G4MT developed with easiness of porting as a
guiding principle

Porting of a simple application should takes few hours

6

Event Seed

Master Thread
Master thread holds
a shared array that maps:
EventNum ↦ Event Random Seed

G4MTRunManager workflow

7

Event Seed

Master Thread
Job is started:
Geometry and physics are built
G4 kernel is initialized

8

Master Thread

/run/beamOn 4

A pseudo-event loop is started: the
seeds array is filled.
Note: this is guarantees
reproducibility
See A. Ribon’s http://goo.gl/rDMxg
for a discussion on reproducibility

Event Seed
0 123456

1 876532

2 666534

3 876473

http://goo.gl/rDMxg
http://goo.gl/rDMxg

9

Event Seed
0 123456

1 876532

2 666534

3 876473

Master Thread

Worker 1

Worker 2

Worker threads are spawned:
Each one initialize a worker version of the
run manager
Read-only parts of geometry
and physics are shared, read-
write parts are copied

To guarantee maximum portability:
POSIX threads

10

Event Seed
0 123456

1 876532

2 666534

3 876473

Master Thread

/run/beamOn 4

Worker 1

Worker 2

Events are processed in round robin way.
At each event the worker thread re-
initializes its random number generator
according to the shared array

Use of TBB

11

See C. Jones presentation: http://goo.gl/fjRIq for a good introduction to TBB

http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=204429
http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=204429

Requirements

12

Do not change G4 code
All TBB specific code should be external to G4

As it is in experiment frameworks

Simplest solution:
Sub-class G4RunManager to create a proxy to G4
Encapsulate in this new run manager all TBB specific code

My Implementation

I opted for the simplest solution:
Derive from G4RunManager and re-implement DoEventLoop

Similarly to large experiment
frameworks:

Take control of G4 re-implementing G4RunManager

Similarly to G4MT: perform a
preliminary event loop

Simulation of one event is a single tbb::task
Create a list of tasks initialized with predetermined random seeds
Obtaining an association: task ↔event

13

Note

User-specific RunManager
Incapsulates all tbb logic

There is no need to modify any G4 class
Starting from 9.6 G4RunManager will extend
interface

Breaking down DoEventLoop
Achieving simpler control of run-workflow for derived run managers

14

The derived RunManager has no control on
threads

However each thread needs a (private) instance of G4 kernel (physics,
SD, user actions, ...) and access to shared resources (geometry, physics
tables)

Consequence: before doing simulation work
each tbb::task checks if current thread has an
already initialized “context”, if not it sets up things
correctly (this “context” will be re-used by any other
task running on this thread)

15

An important point

16

class G4RunManager {
private:
static __thread G4RunManager* instance;

public:
static G4RunManager* GetRunManager() {return instance;}
[...]

};

tbb::task* MyTask::execute() {
if (G4RunManager::GetRunManager() == NULL) {
 tbbRunManager = new tbbRunManager();
 tbbRunManager->InitializeWorker();

}
G4Random::setRandomSeed(...);
G4RunManager::GetRunManager()->DoOneEvent();
return NULL;

}

Some pseudo-code
C

urrent G
4M

T

17

tbb::task event0/seed0

tbb::task event1/seed1

tbb::task event2/seed2

tbb::task event3/seed3

tbbRunManager
Main function (main
thread) creates the
list of tbb::tasks

main

18

tbbRunManager Let’s assume now we
have only 1 thread

main

tbb::task_scheduler

pop/executetbb::task event0/seed0

tbb::task event1/seed1

tbb::task event2/seed2

tbb::task event3/seed3

19

tbbRunManager Let’s assume now we
have only 1 thread

main

tbb::task_scheduler

tbb::task event1/seed1

tbb::task event2/seed2

tbb::task event3/seed3

pop/execute

20

tbbRunManager Let’s assume now we
have only 1 thread

main

tbb::task_scheduler

pop/executetbb::task event2/seed2

tbb::task event3/seed3

21

tbbRunManager Let’s assume now we
have only 1 thread

main

tbb::task_scheduler

pop/executetbb::task event3/seed3

22

tbbRunManager

With 2 threads the
task scheduler pops
two tasks at the same
time

main

tbb::task_scheduler

pop/execute

pop/execute
New thread condition

Initialize Job

tbb::task event0/seed0

tbb::task event1/seed1

tbb::task event2/seed2

tbb::task event3/seed3

23

tbbRunManager

With 2 threads the
task scheduler pops
two tasks at the same
time

main

tbb::task_scheduler

pop/execute

pop/execute

tbb::task event0/seed0

tbb::task event1/seed1

tbb::task event2/seed2

tbb::task event3/seed3

24

tbbRunManager

With 2 threads the
task scheduler pops
two tasks at the same
time

main

tbb::task_scheduler

pop/execute

pop/execute

tbb::task event1/seed1

tbb::task event2/seed2

Differences between TBB and G4MT

Strategy is very similar with two differences
It is G4MTRunManager to spawn/control threads,
it’s not the case with this example
In G4MT all threads are initialized at the same time
before any event is simulated. It’s not the case with
this example

There is “lazy initialization” with TBB: initialize context only
when needed

25

Conclusions

26

27

Created a simple G4MT application with TBB
Events are tasks that can be executed in parallel

No code change in G4MT was needed
Few new classes were developed to “glue” G4MT
with TBB
Having a bit of experience with G4MT
implementation was straightforward

No major issues observed
The new G4RunManager interface should simplify developments further

Testing and polishing of code needed
Including checks with large number of threads and scaling
measurements

Aim to providing an official “TBB
example” in future G4MT prototype

This exercise was part of a larger activity to
investigate G4MT capabilities:

Porting to G4MT to MacOSX : done (at least for clang 3.1)
Porting of an application that includes analysis code: done
Study reproducibility (verify that G4MT gives same results as G4
when using same random seeds): done (need to be re-done with 9.6
and increase “strength” of test)
Porting to new Intel Xeon Phi: first preliminary porting done
Study scaling on Intel Xeon Phi: ongoing
Provide example based on TBB: to do

28

Other activities

