First experiences
with G4MT prototype

ﬁGeaﬂbé’

Geant 4 an

mailto:andrea.dotti@cern.ch
mailto:andrea.dotti@cern.ch

Goals

— Large experiments are investigating task-based

harallelism for their software framework

—1 TBB |looks particularly promising

—1 Geant4-MT capabllities will be embedded in Geant4

Version [0 (

Dec. 201 3)

— We need to be sure that GAMT can be
used in these (parallel) frameworks

—1 We need to

answer few questions:

— 1 Is G4AMT “compatible” with such frameworks?

—1 Are changes

to G4 code needed!

— 1 Can we provide a simple TBB-based application as an example!’

Outlook

— 1 Introduction
— G4AMT working model: a reminder

— 1 First experiences with 1 BB

—1 Requirements
1 Some detalls
—1 A simple TBB based application (ParlNO2tbb)

— Conclusions

G4AMT: reminder

— G4MT 1s a effort In two directions:

—1 Make the relevant classes in Geant4 thread-safe
1 Provide a G4MTRunManager that implements event-level parallelism
1 Simple applications can use directly G4MTRunManager

—1 Complex ones will do as they always did: write/subclass their own
run-manager

—1 G4MT developed with easiness of porting as a
oulding principle

— Porting of a simple application should takes few hours

G4AMTRunManager workflow

Master thread holds
Master T hread a shared array that maps:
FventNum — Event Random Seed

Master Thread

Job 1s started:
Geometry and physics are built
G4 kernel is inrtialized

Master Thread

‘ /run/beamOn 4

Event Seed A pseudo-event loop Is started: the

0 123456 seeds array Is filled.

| 876537 Note: th.IS. S ouarantees
reproducibility

2 666534 See A. Ribon'’s http://goo.gl/rDMxg
3 876473 for a discussion on reproducibility

http://goo.gl/rDMxg
http://goo.gl/rDMxg

Worker threads are spawned:
Fach one inrtialize a worker version of the

run manager

Read-only parts of geometry
Master Thread and physics are shared, read-
write parts are copied

0 123456

Worker |
I 876532
2 666534

Worker 2
3 876473

o guarantee maximum portabillity:
POSIX threads

Events are processed in round robin way.
At each event the worker thread re-

initializes rts random number generator
Master Thread according to the shared array
‘ /run/beamOn 4

0 123456 |«
— Worker |
| 876532 ><

2 666534

Use of TBB

See C. Jones presentation: http://goo.gl/fjRIq for a good introduction to TBB

http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=204429
http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=204429

Requirements

— Do not change (G4 code
—4 All TBB specific code should be external to G4

—4 As It Is In experiment frameworks

— Simplest solution:

—4 Sub-class G4RunManager to create a proxy to G4
—4 Encapsulate in this new run manager all TBB specific code

My Implementation

— | opted for the simplest solution:
—1 Derive from G4RunManager and re-implement DokEventlLoop

— Similarly to large experiment

frameworks:
1 Take control of G4 re-implementing G4RunManager

— Similarly to GAMT: perform a
preliminary event loop

—1 Simulation of one event Is a single tbb:task
—1 Create a list of tasks inrtialized with predetermined random seeds
—4 Obtaining an association: task <»event

Note

—4 User-specific RunManager
—1 Incapsulates all tbb logic

—1 There 1s no need to modify any G4 class

— 1 Starting from 9.6 G4RunManager will extend
interface
—1 Breaking down DoktventLoop

—1 Achieving simpler control of run-workflow for derived run managers

An important point

— 1 The derived RunManager has no control on

threads

—1 However each thread needs a (private) instance of G4 kernel (physics,
SD, user actions, ...) and access to shared resources (geometry, physics

tables)

— Consequence: before doil

each tbb:tas
already Inrtia

correctly (thi

task running

< checks If curre

ng simulation work
Nt thread has an

ized “context’, If not It sets up things

on this thread)

s “context’” will be re-used by any other

Some pseudo-code

class G4RunManager {

private: _
static __thread G4RunManager® 1instance;

public: _
static G4RunManager* GetRunManager() {return i1nstance;}
e

Ji o

tbb: :task* MyTask::execute() {
1f (G4RunManager: :GetRunManager() == NULL) {
tbbRunManager = new tbbRunManager();
} tbbRunManager->Initializeworker();
G4Random: : setRandomSeed(.) ;
G4RunManager GetRunManager() ->DoOneEvent();
return NULL;

¥

LIWFD 3uaInd

main

tbbRunManager

tbb::task eventO/seed(

tbb::task eventl/seed|

tbb::task event2/seed?

tbb::task event3/seed3

Main function (main
thread) creates the
list of tbb:itasks

main

tbbRunManager

tbb::task eventO/seed(

tbb::task eventl/seed|

tbb::task event2/seed?

tbb::task event3/seed3

tbb::task scheduler

\/
<—— pop/execute

L et's assume now we
have only | thread

main

tbbRunManager

tbb::task eventl/seed|

tbb::task event2/seed?

tbb::task event3/seed3

tbb::task scheduler

v
<—— pop/execute

L et's assume now we
have only | thread

main

tbbRunManager

tbb::task event2/seed?

tbb::task event3/seed3

tbb::task scheduler

v
<«<—— pop/execute

L et's assume now we
have only | thread

20

main

tbbRunManager

tbb::task event3/seed3

tbb::task scheduler

v
<—— pop/execute

L et's assume now we
have only | thread

21

main

tbbRunManager

tbb::task eventO/seed(

tbb::task eventl/seed|

tbb::task event2/seed?

tbb::task event3/seed3

tbb::task scheduler

\/
<—— pop/execute

With 2 threads the
task scheduler pops
two tasks at the same
time

pop/execute
New thread condition
Initialize Job

22

main
With 2 threads the

tbbRunManager task scheduler pops
two tasks at the same

time

Y
tbb::task eventO/seedQ| <—— Ppop/execute

tbb::task eventl/seed|

tbb::task event2/seed?

tbb::task event3/seed3 | < pop/execute

main

tbbRunManager

tbb::task eventl/seed|

tbb::task event2/seed?

tbb::task scheduler

v
<—— pop/execute

With 2 threads the
task scheduler pops

two tasks at the same

time

<

pop/execute

24

Differences between TBB and GAMT

—1 Strategy |
—1 It 1s G4
t's not the case with this exa

—

n G4M

- all threads are Initia

s very similar with two differences
TRunManager to spawn/control threads,

mple

ized at the same time

pefore any event Is simulated. It's not the case with
this example

—1 There is“lazy intialization” with TBB: initialize context only
when needed

25

onclusions

—1 Created a simple GAMT application with TBB

—4 Events are tasks that can be executed in parallel

—
—

No code change in G4

-ew nNew classes were deve
with TRB

was needed
oped to “glue” GAMT

—1 Having a bit of experience with GAMT
implementation was straightforward

—1 No major Issues observed

—1 The new G4RunM

—

—

anager interface should simplify developments further

Testing and polishing of code needed

measurements

Including checks with large number of threads and scaling

— Aim to providing an official “TBB
example” in future GAMT prototype

27

Other activities

—4 This exercise was part of a larger activity to
investigate GAMT capabllities:
— 1 Porting to G4MT to MacOSX : done (at least for clang 3.1)
— 1 Porting of an application that includes analysis code: done

— | Study reproducibility (verify that GAMT gives same results as G4
when using same random seeds): done (need to be re-done with 9.6
and increase "'strength” of test)

Porting to new Intel Xeon Phi: first preliminary porting done
Study scaling on Intel Xeon Phi;
Provide example based on IBB: to do

IR

28

