
LPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisLPNHE ParisHepMC and Root I/O

Lars Sonnenschein

• HepMC Class Dictionaries
• Root GenReflex I/O
• Root Cint I/O
• Examples/Test executables
• Performances
• Conclusions

This work has been supported by a Marie Curie Early Stage Research Training Fellowship of the Eu-
ropean Community’s Sixth Framework Programme under contract number MRTN-CT-2006-035606,
by the Commissariat à l’Energie Atomique and CNRS/Institut National de Physique
Nucléaire et de Physique des Particules, France
and by the HEPtools EU Marie Curie Research Training Network under the contract number MRTN-
CT-2006-035505.

CERN, 24. October 2007/1

HepMC Class Dictionaries

Two approaches

• GenReflex Dictionary:
a) genreflex reads a C++ class header file,
b) and reads a xml class selection file
c) provides the class dictionary source code needed for object I/O based on
Root
d) example usage:
genreflex Classes Rflx.h -s selection.xml \
-o Classes Rflx.cc \
--gccxmlpath $GCCXMLPATH/bin -I$HEPMCINCPATH

• Cint Dictionary:
a) rootcint reads a C++ class header file,
b) and reads the classes to be added to Root via a shared library from a
pre-processor directive header file (LinkDef.h)
c) provides class dictionary source code needed for object I/O based on Root
d) example usage:
rootcint -f Classes Cint.cc -c -p -I$HEPMCINCPATH \
$ROOTCPPFLAGS Classes Cint.h LinkDef.h
Lars Sonnenschein CERN & LPNHE, Universités Paris VI + VII CERN, 24. October 2007/2

Example code in a Nutshell

• For the time being you can get the installation directory HepMCRootIO from
/afs/cern.ch/user/s/sonne/public/

• It is based on autotools to simplify cross platform portability

• Installation steps:
a) Root needs to be available, $ROOTSYS path has to be set
b) HepMC needs to be available $HEPMCPATH has either to be set as environ-
ment variable or passed as an option to configure

c) Optionally $GCCXMLPATH (for genreflex) can be specified (again, either as
environment variable or passed as an option to configure)
◦ autoreconf -iv

◦ ./configure --prefix=/path to install dir

[HEPMCPATH=/...] [GCCXMLPATH=/...]

◦ make

◦ make install

Lars Sonnenschein CERN & LPNHE, Universités Paris VI + VII CERN, 24. October 2007/3

Test executables
• All test executables are produced in the src subdirectory and together with

shared libraries in the specified installation directory (bin and lib subdirecto-
ries)

• Based on GenReflex:
◦ Executable: writeEvtKey.x based on source file writeEvtKey.cc

Writes a simple GenEvent with one GenParticle and its GenVertex via the
TFile WriteObject() function to the output file writeEvtKey.root

◦ Executable: readEvtKey.x based on source file readEvtKey.cc

Read in a file of GenEvent’s stored in genreflex dictionary format (file name
to be specified at command line) and print out each event.

◦ Executable: testRootIO.x based on source file testRootIO.cc

Produce a simple GenEvent with one GenParticle and its GenVertex,
store it in HepMC ASCII format and in genreflex dictionary format.
Read the file in genreflex dictionary format back in and print each event.

Lars Sonnenschein CERN & LPNHE, Universités Paris VI + VII CERN, 24. October 2007/4

Snippets of code: writeEvtKey.cc

gSystem−>Load (” l i bR f l xHepMCd i c t ”) ;
ROOT: : C in t ex : : C i n t ex : : Enab le () ;

HepMC : : GenEvent ∗ ev t = new HepMC : : GenEvent ;
HepMC : : G e nPa r t i c l e ∗ pa r t =

new HepMC : : G e nPa r t i c l e (HepMC : : FourVector (1 0 , 2 0 , 3 0 , 4 0) , 9 9) ;

HepMC : : GenVertex ∗ v t x = new HepMC : : GenVertex () ;

vtx−>a d d p a r t i c l e o u t (pa r t) ;
evt−>add v e r t e x (v t x) ;

s t d : : s t r i n g s t e v t = ” Event 1 ” ;
con s t cha r ∗ chev t = s t e v t . c s t r () ;

TF i l e ∗ f o = new TF i l e (” wr i t eEvtKey . r oo t ” ,”RECREATE”) ;
fo−>Wri teOb jec t (evt , chev t) ;

Lars Sonnenschein CERN & LPNHE, Universités Paris VI + VII CERN, 24. October 2007/5

Snippets of code: readEvtKey.cc

gSystem−>Load (” l i bR f l xHepMCd i c t ”) ;
ROOT: : C in t ex : : C i n t ex : : Enab le () ;

HepMC : : GenEvent ∗ ev t ;
TF i l e f i (a rgv [1]) ;
f i . Ge tL i s tOfKeys ()−>P r i n t () ;

T I t e r nex t (f i . Ge tL i s tOfKeys ()) ;
TKey ∗ key ;
wh i l e ((key=(TKey∗) nex t ())) {

f i . GetObject (key−>GetName () , e v t) ;

i f (e v t) {
s td : : cout << ”Event : ” < < key−>GetName() << s td : : e nd l ;
evt−>p r i n t () ;

}
e l s e {

s td : : cout << ” Nu l l p o i n t e r !” << s td : : e nd l ;
}

}

Lars Sonnenschein CERN & LPNHE, Universités Paris VI + VII CERN, 24. October 2007/6

Test executables (continued)
• Based on GenReflex (continued):
◦ Executable: testHepMCIKeyO.x based on source file testHepMCIKeyO.cc

Reads in a HepMC ASCII file, to be specified at the command line and writes
out a file in genreflex dictionary format.

• Based on Cint:
◦ Executable: writeEvtTree.x based on source file writeEvtTree.cc

Writes a TTree with simple GenEvent’s with one GenParticle and its
GenVertex to the output file writeEvtTree.root

◦ Executable: readEvtTree.x based on source file readEvtTree.cc

Read in a file of GenEvent’s stored in a TTree (file name to be specified at
command line) and print out bytes read each event.
Under construction, not working yet!

◦ Executable: testHepMCITreeO.x based on source file testHepMCITreeO.cc
Reads in a HepMC ASCII file, to be specified at the command line and writes
out a TTree of GenEvent’s to a file.

Lars Sonnenschein CERN & LPNHE, Universités Paris VI + VII CERN, 24. October 2007/7

Performances
• Test condition:

10k GenEvent’s with a simple GenParticle and its GenVertex
written out to a file.

◦ Writing out TTree is 4-5 times faster than TKey Objects.

◦ Written TTree based on genreflex dictionary
about 20-30% smaller in comparison to Cint dictionary.

• Test condition:
100 busy Tevatron collider multi-jet GenEvent’s generated with Pythia8
(≥ 1 stable particle with p⊥ > 20 GeV and |ηmax| < 3.0) written out to a file.

◦ a) TTree compression factor of about 3
compared to HEPMC ASCII file.
b) Object file based on TKey’s about 20% larger in comparison to HEPMC

ASCII file.

Lars Sonnenschein CERN & LPNHE, Universités Paris VI + VII CERN, 24. October 2007/8

Conclusions

• Root I/O for HepMC in two alternative ways presented

• Provide platform portable framework with code examples

• TTree performance advantage in terms of speed
(∼ 4-5 times faster Output) and file size
in comparison to TKey Objects and HepMC ASCII format
(compression factor ∼ 3 for realistic events)

• Users are invited to test both approaches

Lars Sonnenschein CERN & LPNHE, Universités Paris VI + VII CERN, 24. October 2007/9

