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Möhl–Schönauer Equation  

• In 1974, D. Möhl and H. Schönauer suggested to describe coasting 

beam oscillations by the following equation (MSE): 
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Coherent tune shift, in a frequency domain: 



  

MSE: Dispersion Relation, Coasting Beam  
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Stability diagram method is applied for the stability analysis 



  

MSE Applicability  
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MSE Solutions for coasting beams: EM&FR, Ng 

Elias Metral - 2006 

(EM & FR) 



  

MSE Applicability  
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Outside MSE applicability: Perpetuum Mobile of 2nd Kind (AB) 

Perpetuum Mobile – AB&VL, 2009 

Elias Metral - 2006 

(EM & FR) 



  

MSE Applicability  
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lattice wake space charge 

This equation assumes the beam cross-section does not change at oscillations:  

( , ) ( ).sc sc i sc itQ Q Q J J

When all the lattice tunes are same,                                                     , this 

assumption is correct.  

 

Thus, MSE requires lattice tune spread to be small enough:  

0 0 ( ) ( )i i iQ Q x t x t   

0( )i i scQ Q  

Burov, Lebedev, Phys. Rev. ST-AB 12, 034201 (2009) 



  

Instability Thresholds, Coasting Beam  
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Chromatic threshold 
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Octupolar threshold 



Square Well Model (SWM) 

• For a square potential well and KV transverse distribution, the head-

tail modes with space charge were described by Mike Blaskiewicz 

(1998).  

 

• For the air-bag distribution, there are two particle fluxes in the 

synchrotron phase space: 

 

 

 

 

 

 

• Since                   , MSE is easier to solve in this case.  
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SWM: coherent tunes, no wakes 
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small space charge: 

high space charge: 

incoherent tune shift 

At high space charge, the + 

and - fluxes oscillate in phase 

for the positive modes and out 

of phase for the negative 

modes.  

 

Only positive modes matter for 

high space charge. 



SWM: Landau damping 

• For the square-well model, the dispersion equation is similar to the 

coasting beam case, except the chromaticity is dropped 

(Blaskiewicz, 2003; Burov, 2009):  

 

 

 

 

 

 

 

• Thus, for the resonant particles 

 

 

• For the strong space charge, density of these particle is low, so 

Landau damping is suppressed.                    
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MSE for General Bunched Beam 

• After a substitution                                       with a new variable     ,  

 

 

 the chromatic term disappears from MSE, going instead into the 

wake term (no octupoles!): 

 

 

 

 

 

 

• Thus, for no-wake case, the bunched beam modes do not depend 

on the chromaticity, except the head-tail modulation                 .  

 

• Applicable when  
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MSE, Arbitrary Bunch 

 2nd order ordinary IDE follows (A. Burov, 2009; Balbekov, 2009): 
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( )sc scQ Q  is cross-section averaged. 

( ) ( ) ( )i j ijd y y    

Without wake, the orthogonality condition is satisfied:  

With wake, these functions serve as a complete orthonormal basis  

Damper can be treated as an imaginary/complex wake.  
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No-wake (space charge only) modes, Gaussian bunch 
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These modes do not look too different from no-space charge case.  

The only significant difference is that for strong space charge, modes are counted 

by a single integer, while conventional zero-space-charge modes require 2 

integers: for azimuthal and radial numbers (due to their possible variations along 

synchrotron phase and action).  



Weak Head-Tail for Strong SC  
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Coherent growth rates for the Gaussian bunch 

 

with the constant wake          as functions of the head-tail phase              , 

for the lowest mode 0 (red), mode 1 (blue), mode 2 (green), 

mode 3 (magenta), and mode 4 (cyan).  

 

The rates are in units of           . 
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Burov, 2009 



Vanishing TMCI 

• While the conventional head-tail modes are numbered by integers,  

 

     the space charge modes are numbered by natural numbers: 

 

• This is a structural difference, leading to significant increase of the 

transverse mode coupling instability: the most affected lowest mode 

has no neighbor from below.    
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Coherent tunes of the Gaussian bunch 

for zero chromaticity and constant 

wake versus the wake amplitude.  

 

Note high value of the TMCI 

threshold.  
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Landau Damping (LD) 

• For strong space charge                , particles and modes are tune-

separated by       , so their resonance seems to be impossible.  

 

• However, this is not generally correct, since the SC tune shift goes 

to 0 at the bunch tails, where this resonance may happen.  

 

• The higher is SC, the further to the tails it happens. Thus, space 

charge strongly suppresses LD.  

 

• Positive octupolar tune shift provides more LD from high transverse 

amplitudes. 
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Landau damping – results 

• According to (Burov, 2009), for Gaussian bunch intrinsic LD rate is 

estimated as: 

 

 

     (the numerical factor ~ 0.1 – a best fit of  Vladimir Kornilov with his 

tracking simulations, 2010) 

   

 

• Note: mode k=0 is not damped at all. It is stable though for the 

proper sign of the chromaticity. For coupled bunches – 

damper/octupoles are needed. 

 

• With octupoles, an asymptotic estimation yields (never 

benchmarked so far!): 
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Space Charge and E-Cloud 

• Electron cloud generates both a destabilizing (broad-band) wake 

and stabilizing nonlinearity. Apparently, the latter should be higher, 

so e-cloud by itself should not drive a coherent instability.  

 

• However, e-cloud nonlinearity may be partly cancelled by other 

nonlinearities, as it apparently happens at LHC (3-beam instability or 

beam-beam-beam effect? – Burov, 2013). If so, e-cloud wake drives 

the instability.  

 

• If the space charge tune shift is higher than e-cloud’s one, the latter 

is not important, so e-cloud drives instability.  

 

• Apparently, the beam should be stabilized with higher e-density. 

• However, e-cloud accumulation may be stopped at lower intensity 

by the instability itself.  
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Space Charge Trick 

• Space charge tune shift limits beam emittances.  

 

• However, there is a trick to reduce one of the two emittances down 

to “zero”, keeping another just sqrt(2) higher, and having the same 

space charge tune shift as for the conventional planar optics.  

 

• This is achieved by means of circular optics.  

 

• When needed, circular modes can be transferred to planar and back 

by means of skew triplets (Derbenev, Burov & Danilov).  

 

• This trick looks extremely attractive for hadron colliders:  

 A. Burov, “Circular modes for flat beams in LHC”, CERN AP Forum, 

Oct 1, 2012; Proc. HB’2012 workshop.    
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Summary 

• SC effects on beam transverse oscillations can be described by 

MSE, applicable at strong SC both for coasting and bunched beams.  

 

•  With SC, bunch modes are counted by a single integer parameter 

(without SC it takes 2 of them).  

 

• The eigensystem can be found from 1D ordinary IDE.  

 

• TMCI is suppressed by SC, but LD is suppressed as well.  

 

• SC should be expected to provoke e-cloud instability.  

 

• SC limit to smaller emittance can be avoided: circular modes. 
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Many Thanks! 


