Space charge effects based on measured lattice

K. Ohmi (KEK) Space Charge 2013, CERN, 16-19, Apr. 2013

Thanks to S. Hatakeyama, S. Igarashi, A. Molodojentsev, Y. Sato, J. Takano

Status of J-PARC MR

- MR Beam Power is 200-220kW at 30GeV for Fast eXtrac.
- Limitation of bunching factor (~0.2) due to leakage (extra kick) of injection kicker.
- Tune shift is ~0.2, for the beam size $\epsilon(1\sigma)=4-5\pi \mu m$ at 3GeV.
- Np=1.3x10¹³x8 bunches

```
Aperture: \sim 70 \pi \mu m
```

- Operating point, 22.4,20.75
- Instability has been observed. Feedback and chromaticity suppress basically.
- Linac upgrade 180MeV to 400 MeV in 2014.
- Quality and quantity(>2x) of RCS beam is improved.
- High power operation toward the design power (750kW) becomes real mission.

Introduction

- One turn map is determined by nonlinear force itself and linear optics at the nonlinear force elements.
- Linear optics parameters are measurable.
- Nonlinear space charge dynamics based on measured optics.
- My stand point: we understand nonlinear components (including space charge) of an accelerator, but do not understand the linear optics at the nonlinear components.

One turn map for nonlinearity lattice

$$\mathcal{M}(s) = \prod_{i=0}^{N_I - 1} M_0(s_{i+1}, s_i) e^{-:H_I(s_i):}$$

Transfer matrix from s_i to s_{i+1} Nonlinear transformation at s_i

$$e^{-:H_I(s_i):} \boldsymbol{p} = \boldsymbol{p} - \frac{\partial H_I(s_i)}{\partial \boldsymbol{x}}$$

 $H_{I}(s_{i}) = \frac{K_{2}(s_{i})}{6}(x^{3} - 3xy^{2}) \qquad K_{2} = \frac{eB''}{p_{0}} \qquad \text{ex. Sextupole magnet}$ $H_{I} = \Phi(x, y, s) \qquad \begin{array}{l} \text{ex. 2 space charge potential given by solving} \\ \text{Poisson equation with the beam distribution.} \end{array}$

Integration step: $\Delta s < \beta_{xy}$ $\Delta \phi_{x,y} = \frac{\Delta s}{\beta_{x,y}}$

Linear dynamics

• Linear Motion is represented by symplectic matrix transformation of the dynamic variables x.

$$\boldsymbol{x}(s) = (x, p_x, y, p_y, z, \delta)^t$$
 $z = v(t_0 - t)$ $\delta = \frac{\Delta p}{p_0}$

Revolution matrix, M(s).

$$\boldsymbol{x}(s+C) = M_0(s)\boldsymbol{x}(s)$$

Diagonalize 2x2 blockwisely

$$V_0(s)M_0(s)V_0(s)^{-1} = \begin{pmatrix} U_X & 0 & 0\\ 0 & U_Y & 0\\ 0 & 0 & U_Z \end{pmatrix} \equiv U_0 \qquad U_i \equiv \begin{pmatrix} \cos\mu_i & \sin\mu_i\\ -\sin\mu_i & \cos\mu_i \end{pmatrix}$$
$${}_{i=X,Y,Z}$$

- Split into three modes (X,Y,Z), with tunes $\mu_i = 2\pi\nu_i$
- Transfer matrix and betatron phase $M_0(s_2, s_2) = V_0(s_2)^{-1}U_{21}V_0(s_1)$ $U_{21} \equiv \begin{pmatrix} U_{u,21} & 0 & 0 \\ 0 & U_{v,21} & 0 \\ 0 & 0 & U_{w,21} \end{pmatrix}$ measurable $U_{i,21} \equiv \begin{pmatrix} \cos(\phi_i(s_2) - \phi_i(s_1)) & \sin(\phi_i(s_2) - \phi_i(s_1)) \\ -\sin(\phi_i(s_2) - \phi_i(s_1)) & \cos(\phi_i(s_2) - \phi_i(s_1)) \end{pmatrix}$

Twiss parameter and normal mode

- Diagonalizing (eigenvector) matrix, V_0 , is parametrized $V_0(s) = B_0(s)R_0(s)H_0(s)$ $R = \begin{pmatrix} r_0 & 0 & -r_4 & r_2 & 0 & 0 \\ 0 & r_0 & r_3 & -r_1 & 0 & 0 \\ r_1 & r_2 & r_0 & 0 & 0 & 0 \\ r_3 & r_4 & 0 & r_0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ $H = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -\eta_x \\ 0 & 1 & 0 & 0 & 0 & -\eta'_x \\ 0 & 0 & 1 & 0 & 0 & -\eta'_y \\ 0 & 0 & 0 & 1 & 0 & -\eta'_y \\ \eta'_x & -\eta_x & \eta'_y & \eta_y & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ $B = \begin{pmatrix} B_X & 0 & 0 \\ 0 & B_Y & 0 \\ 0 & 0 & B_Z \end{pmatrix}$ $B_i = \begin{pmatrix} \frac{1}{\sqrt{\beta_i}} & 0 \\ \frac{\alpha_x}{\sqrt{\beta_i}} & \sqrt{\beta_i} \end{pmatrix}$ i = X, Y, Z
- $V_0 = B_0 R_0 H_0$ is represented by Extended Twiss parameters $(\alpha, \beta, r_1 r_4, \eta)$. $r_0 = \sqrt{1 - r_1 r_4 + r_2 r_3}$
- Normal coordinates \mathbf{X} are defined by V,

$$\begin{aligned} \boldsymbol{X}(s) &= B_0(s) R_0(s) H_0(s) \boldsymbol{x}(s) = V_0(s) \boldsymbol{x}(s) & \boldsymbol{X}(s+C) = U_0 \boldsymbol{X}(s) \\ \boldsymbol{X} &= (X, P_X, Y, P_Y, Z, P_Z)^t & J_X = \frac{X^2 + P_X^2}{2} \end{aligned}$$

Betatron motion and Extended Twiss parameters

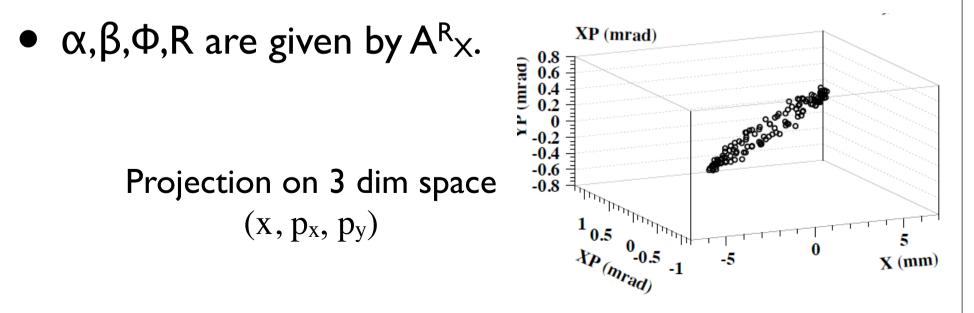
- Linear optics parameters, B, R, H and betatron (synchrotron) phases are measurable.
- Betatron oscillation (4x4 formalism, omit 5,6 components)

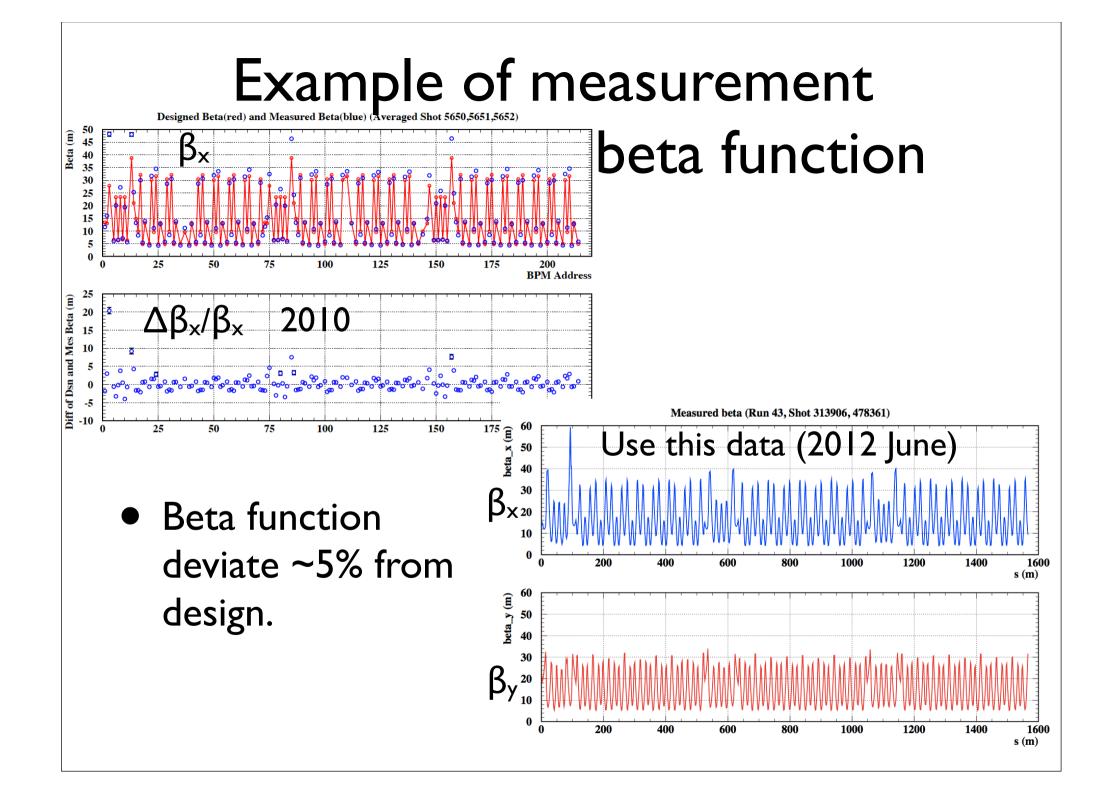
$$\delta(\boldsymbol{x}^T A_X^R \boldsymbol{x} - W_X) \delta(\boldsymbol{x}^T A_Y^R \boldsymbol{x} - W_Y)$$

• Courant-Snyder invariant $W_{X,Y} = 2J_{X,Y} = \boldsymbol{x}^T A_{X,Y}^R \boldsymbol{x}$ $A_i^R \equiv RS_4 A_i R^{-1} \qquad S_4 = \begin{pmatrix} S_2 & 0 \\ 0 & S_2 \end{pmatrix} \quad S_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $A_X = \begin{pmatrix} \gamma_X & \alpha_X & | & 0 \\ \hline \alpha_X & \beta_X & | & 0 \\ \hline & 0 & | & 0 \end{pmatrix} \qquad A_Y = \begin{pmatrix} 0 & 0 \\ \hline & 0 & \gamma_Y & \alpha_Y \\ \hline & 0 & | & \alpha_Y & \beta_Y \end{pmatrix}$

Measurement of E-Twiss parameters

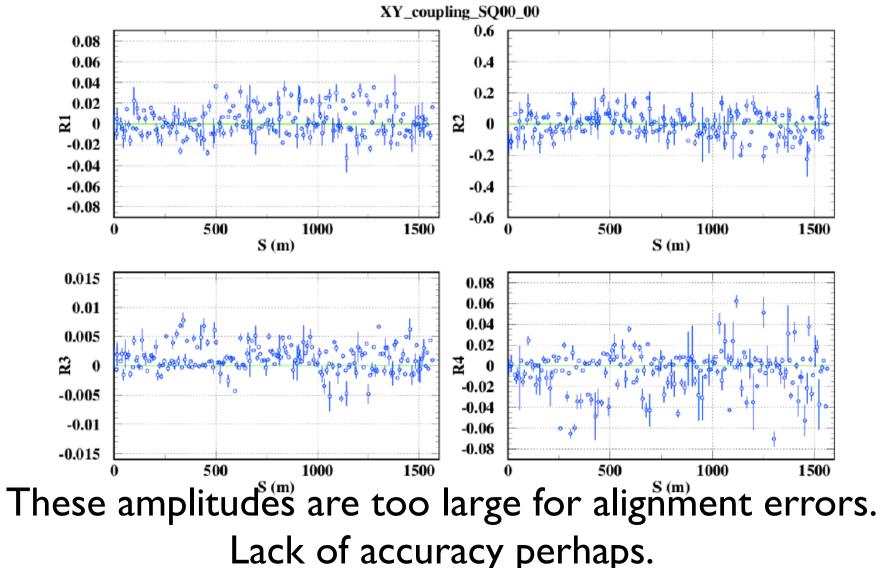
- X mode is induced by x injection error. $X \sim x, W_Y \sim 0$
- Elliptical trajectory in 4 dimensional phase space (x,p_x,y,p_y) . $\delta(x^T A_X^R x W_X)$
- The phase space trajectory is reconstructed by turn-by-turn monitor

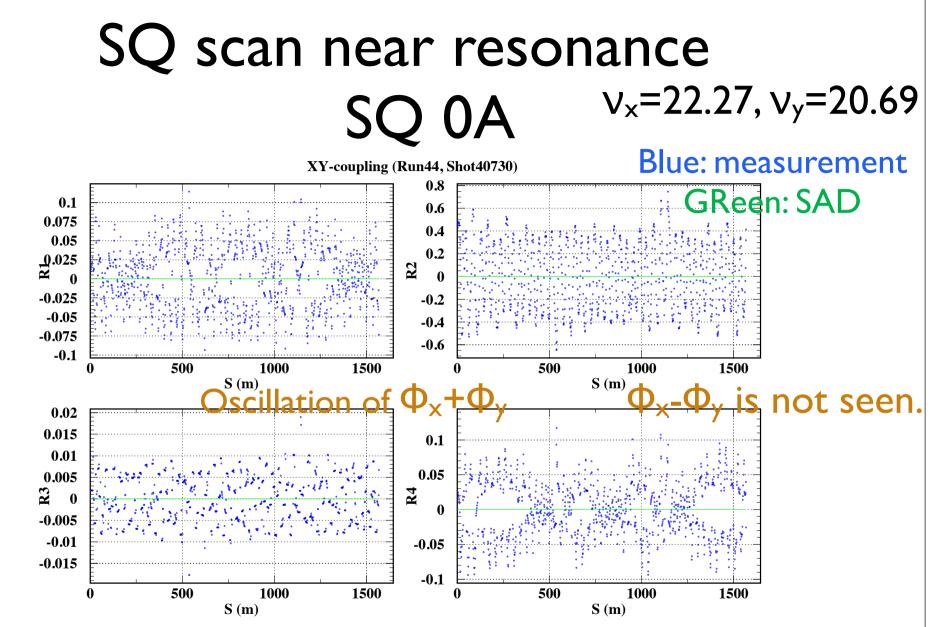




Example of measurement

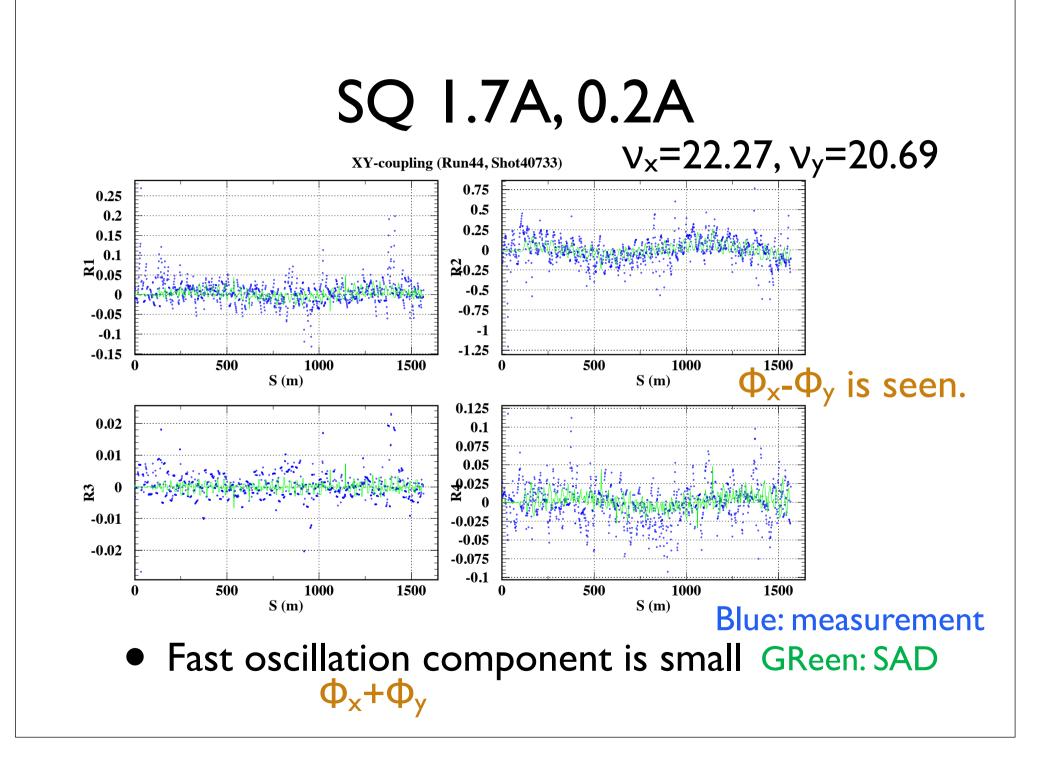
 r_1 - r_4 x mode excitation

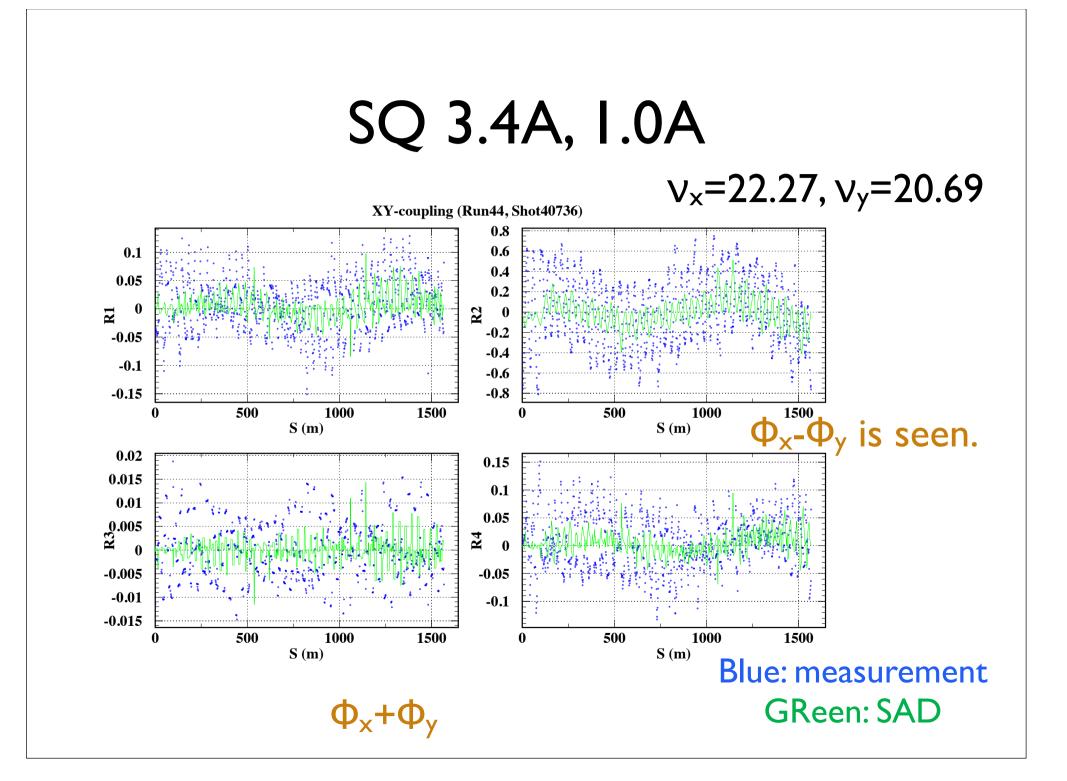




• Amplitude increases for closer $v_x + v_y = 43$

• Reasonable behavior. Sufficient accuracy near the resonance.





Simulation with the measured linear optics

$$\mathcal{M}(s) = \prod_{i=0}^{N_I - 1} M_0(s_{i+1}, s_i) e^{-:H_I(s_i):}$$

 $M_0(s_{i+1}, s_i) = V_0^{-1}(s_{i+1})U_{i+1,i}V_0(s_i)$ • Design transfer matrix M₀ is replaced by measured transfer matrix M.

$$\mathcal{M}(s) = \prod_{i=0}^{N-1} M(s_{i+1}, s_i) e^{-:H_I(s_i):}$$

Actual coding

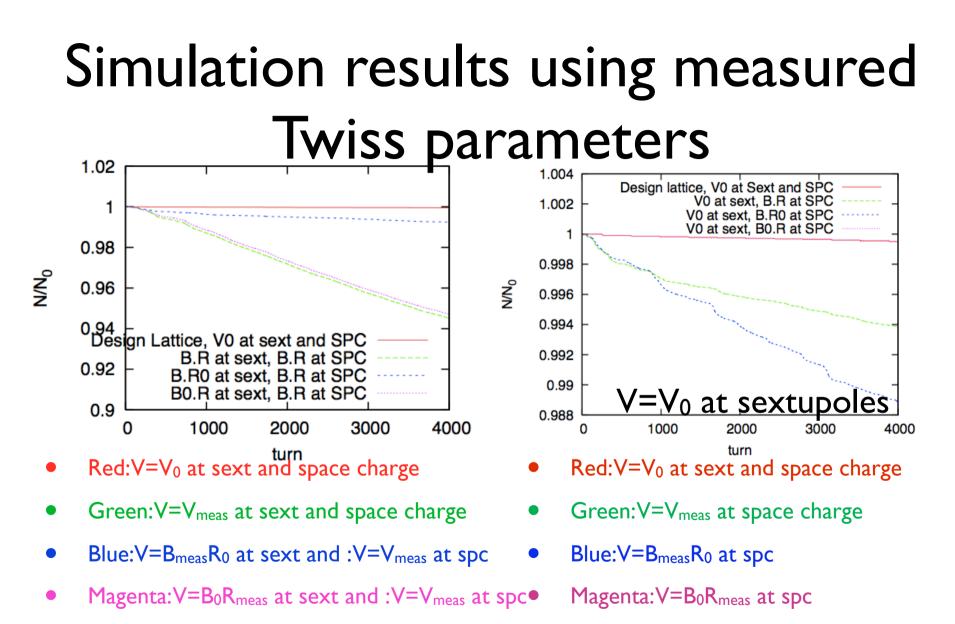
V: measured optics V₀: design optics ΔU: phase difference

$$M(s_{i+1}, s_i) = V^{-1}(s_{i+1})U_{i+1,i}\Delta U_i V(s_i)$$

$$= V^{-1}(s_{i+1})V_0(s_{i+1})M_0(s_{i+1},s_i)V_0^{-1}(s_i)\Delta U_iV(s_i)$$

$$e^{-:H_I:} \Rightarrow V_0^{-1}(s_i) \Delta U_i V(s_i) e^{-:H_I:} V^{-1}(s_i) V_0(s_i)$$

insert these transformation, tilt sext, tilt space charge



Coupling at Sextupoles is main source of the beam loss. β deviation does not affect in this case.

Non-resonant space charge model

- Space charge force gives only tune spread.
- Space charge force does not give any resonance term.
- Emittance growth related to resonances is caused by the lattice resonance and space charge tune spread.

$$H = \mu \cdot J + H_{00}(J) + \sum_{m=1}^{\infty} G_m(J) \exp(-im \cdot \phi) + U(J_x, J_y)$$

Lattice nonlinearity
based on measured optics Space charge

Estimate lattice resonance term

- One turn map is represented by Polynomials.
- Polynomial expression of Hamiltonian
- Expression using J, Φ. $H_n(\mathbf{X}) \Rightarrow H_n(\mathbf{J}, \phi)$ $X = \sqrt{2J_x} \cos \phi_x \quad P_X = \sqrt{2J_x} \sin \phi_x$ $H_n(\mathbf{J}, \phi) = H_{00}(\mathbf{J}) + \sum_{\mathbf{m}=1} G_{\mathbf{m}}(\mathbf{J}) \exp(-i\mathbf{m} \cdot \phi)$

up to 12-th order

 $\begin{array}{rcl} H_{00}(\boldsymbol{J}) &=& 3.43103 \times 10^{14} J_x^6 + 7.36914 \times 10^{14} J_x^5 J_y + 7.17029 \times 10^{11} J_x^5 + 2.34124 \times 10^{15} J_x^4 J_y^2 \\ &+& 1.70991 \times 10^{12} J_x^4 J_y + 1.43961 \times 10^8 J_x^4 + 4.48931 \times 10^{15} J_x^3 J_y^3 + 2.20917 \times 10^{12} J_x^3 J_y^2 \\ &+& 2.50211 \times 10^8 J_x^3 J_y + 613899. J_x^3 + 3.33998 \times 10^{15} J_x^2 J_y^4 + 1.79716 \times 10^{12} J_x^2 J_y^3 \\ &+& 7.07531 \times 10^8 J_x^2 J_y^2 + 809323. J_x^2 J_y + 1095.71 J_x^2 + 7.58773 \times 10^{14} J_x J_y^5 \\ &+& 5.7438 \times 10^{11} J_x J_y^4 + 4.55828 \times 10^8 J_x J_y^3 + 650655. J_x J_y^2 + 2096.06 J_x J_y \\ &+& 4.11283 \times 10^{13} J_y^6 + 4.00294 \times 10^{10} J_y^5 + 5.3027 \times 10^7 J_y^4 + 79924.4 J_y^3 + 1106.98 J_y^2 \end{array}$

Characteristics of the resonances

- Slope of tune in **J** space breaks the resonance condition for **J** deviation.
- G_m characterizes strength of the resonance.

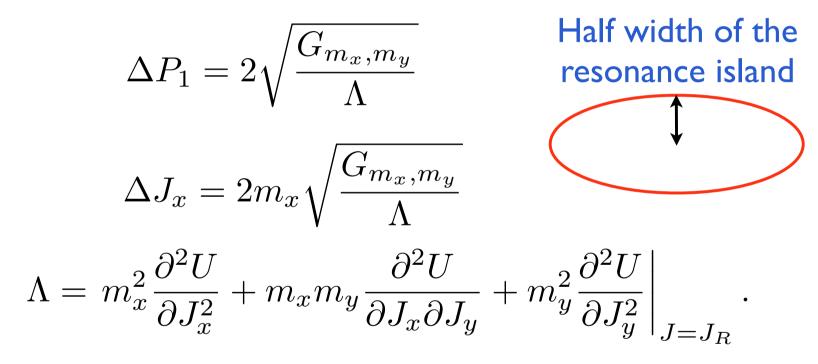
• Expand U near J_R .

$$U(\boldsymbol{J}) = U(\boldsymbol{J}_R) + \left. \frac{\partial U}{\partial \boldsymbol{J}} \right|_{J_R} (\boldsymbol{J} - \boldsymbol{J}_R) + (\boldsymbol{J} - \boldsymbol{J}_R) \frac{1}{2} \left. \frac{\partial^2 U}{\partial \boldsymbol{J} \partial \boldsymbol{J}} \right|_{J_R} (\boldsymbol{J} - \boldsymbol{J}_R)$$

$$\frac{\partial \nu_i}{\partial J_j}\Big|_{J_R} = \frac{\partial \nu_j}{\partial J_i}\Big|_{J_R} = \frac{\partial^2 U}{\partial J_i \partial J_j}\Big|_{J_R} \qquad \text{Tune slope near } J_R.$$

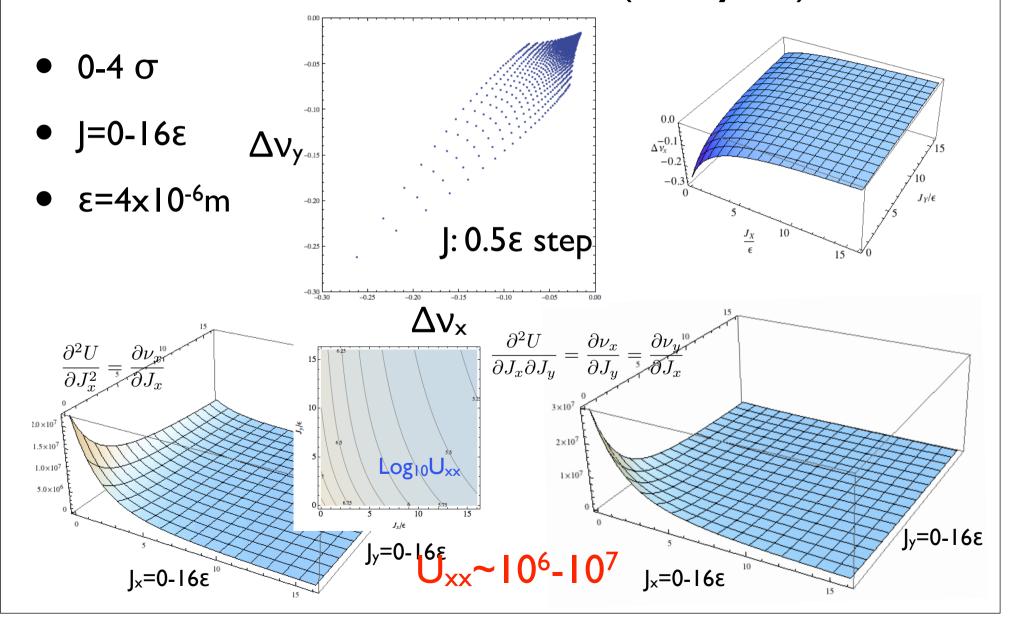
Standard model and Resonance width

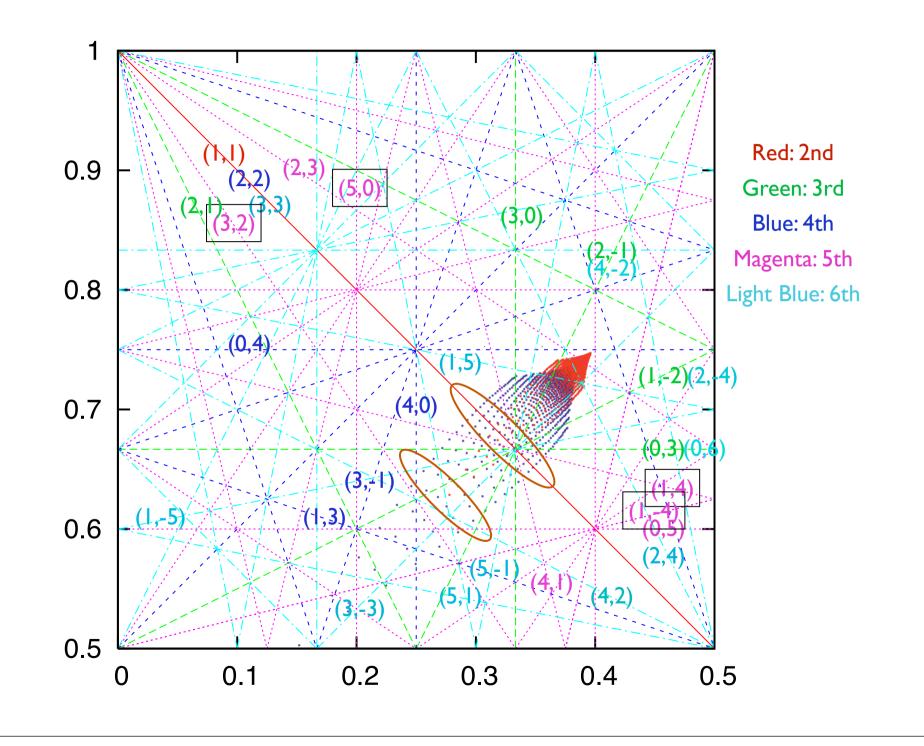
$$H = \frac{\Lambda}{2} P_1^2 + G(\boldsymbol{J}_R) \cos(i\psi_1)$$



 Resonance width is sqrt of the ratio of the resonance strength (G) and the tune slope (Λ)

Tune shift & spread for the space charge force of round beam (analytic)





$G_m(J_R)$

$$G_{2,-1}(\mathbf{J}) = (476.934 + 1826.57i)J_x^2 \sqrt{J_y} - (84741. + 1.08066 \times 10^6 i)J_x J_y^{5/2}$$

- $(653.179 398.496i)J_x J_y^{3/2} + (0.00557469 + 0.0610964i)J_x \sqrt{J_y}$
- $+ \quad (6.07124 \times 10^{12} + 1.94221 \times 10^{13} i) J_x^5 \sqrt{J_y} (1.80699 \times 10^{13} 6.48683 \times 10^{13} i) J_x^4 J_y^{3/2}$
- $+ \quad (1.26929 \times 10^{10} 8.72993 \times 10^{9} i) J_x^4 \sqrt{J_y} + (7.29356 \times 10^{13} 4.38153 \times 10^{13} i) J_x^3 J_y^{5/2}$
- + $(1.49887 \times 10^{10} + 2.39589 \times 10^{10}i)J_x^3 J_y^{3/2} + (4.24466 \times 10^6 + 435556.i)J_x^3 \sqrt{J_y}$
- $(3.32852 \times 10^{12} + 2.78795 \times 10^{13}i) J_x^2 J_y^{7/2} (3.94261 \times 10^9 6.26479 \times 10^9i) J_x^2 J_y^{5/2}$
- $(1.00423 \times 10^{6} + 4.1807 \times 10^{6} i) J_{x}^{2} J_{y}^{3/2} (1.7948 \times 10^{13} + 1.7958 \times 10^{12} i) J_{x} J_{y}^{9/2}$

$$- (1.36817 \times 10^{10} + 2.57963 \times 10^9 i) J_x J_y^{7/2}$$

- Substitute J=J_R
- G is evaluated at $J_R = 3^2 \varepsilon$ (as a typical case);
- $J_x+J_y=3x | 0^{-6}x9=36x | 0^{-6}$

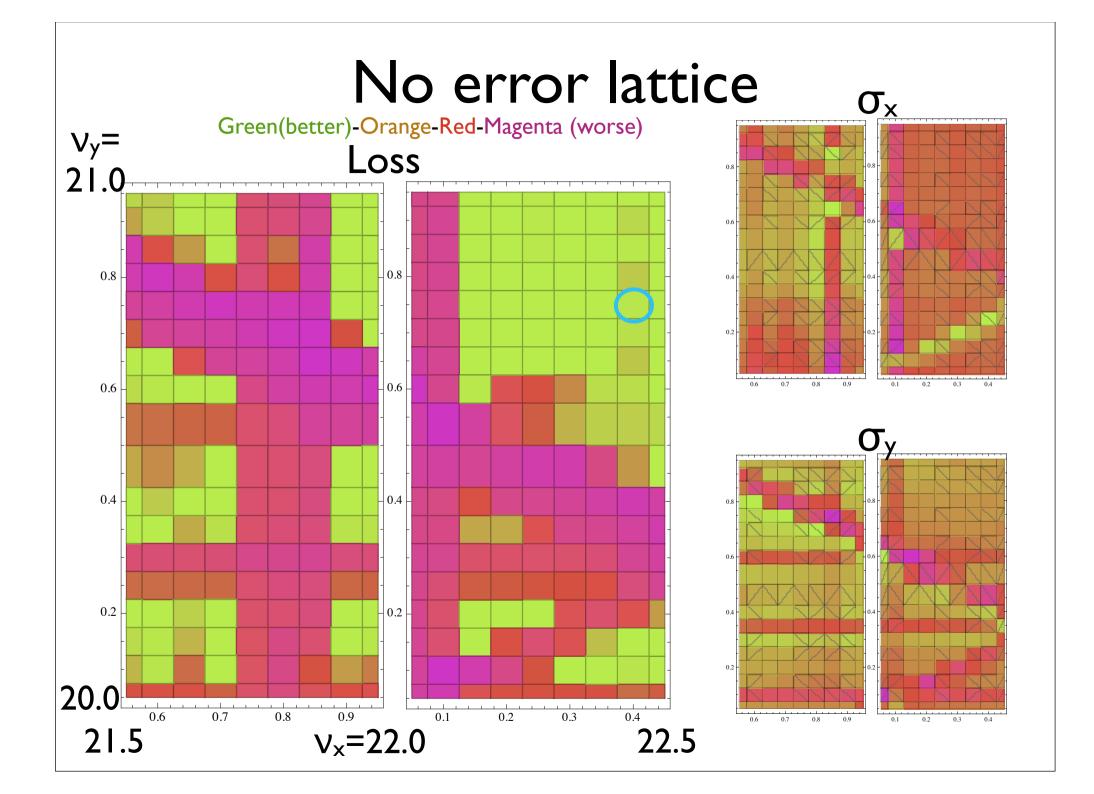
$$\Delta J_x = 2m_x \sqrt{\frac{G_{m_x,m_y}}{\Lambda}} \qquad \Lambda \approx 10^6$$

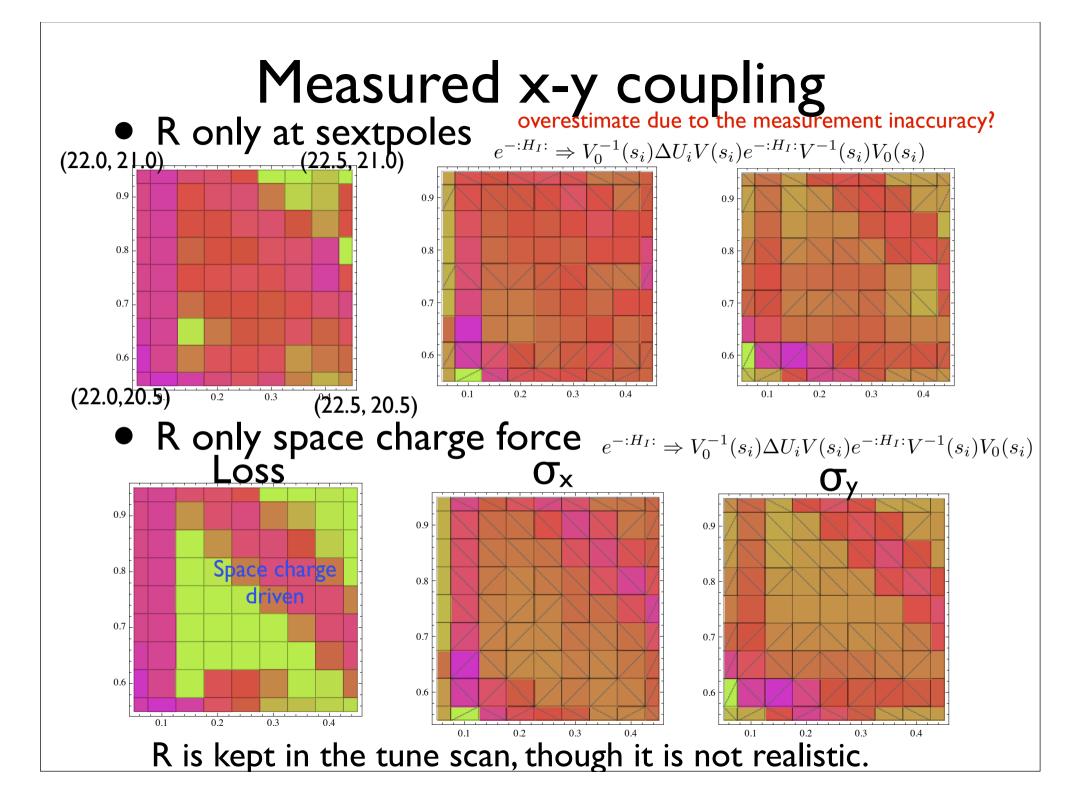
shot •	shot 40722				No error r	neasured B,l	J measured
	mx	my	Jx	Jy	[G] (B0)	G (B)	[G] (BR)
	1	0	3.6E-05	0.0E+00	4.84E-08	1.88E-07	1.86E-07
	2	0	3.6E-05	0.0E+00	2.47E-08	4.55E-08	4.66E-08
	1	1	1.8E-05	1.8E-05	1.28E-25	1.67E-26	4.01E-09
	0	2	0.0E+00	3.6E-05	5.55E-09	3.91E-09	2.69E-09
	3	0	3.6E-05	0.0E+00	5.46E-08	1.29E-07	1.32E-07
	2	1	1.8E-05	1.8E-05	2.09E-25	1.42E-26	1.42E-07
	2	-1	1.8E-05	1.8E-05	2.16E-25	4.52E-27	7.96E-08
	1	2	1.8E-05	1.8E-05	4.66E-08	1.78E-07	1.83E-07
	1	-2	1.8E-05	1.8E-05	1.48E-07	2.72E-07	2.72E-07
	0	3	0.0E+00	3.6E-05	1.42E-25	1.59E-26	1.10E-07
	4	0	3.6E-05	0.0E+00	2.50E-07	2.51E-07	2.51E-07
	3	1	1.8E-05	1.8E-05	1.93E-26	2.52E-27	6.80E-09
	3	-1	1.8E-05	1.8E-05	1.61E-26	4.97E-27	7.04E-10
	2	2	1.8E-05	1.8E-05	2.49E-08	5.90E-09	5.58E-09
	2	-2	1.8E-05	1.8E-05	1.27E-08	8.40E-09	8.03E-09
	1	3	1.8E-05	1.8E-05	2.52E-26	5.66E-27	3.56E-09
	1	-3	1.8E-05	1.8E-05	1.63E-26	1.10E-26	8.42E-10
	0	4	0.0E+00	3.6E-05	1.20E-08	1.45E-08	1.42E-08

mx	my	Jx	Jy	G (B0)	[G] (B)	[G] (BR)
5	0	3.6E-05	0.0E+00	4.03E-09	3.07E-09	3.08E-09
4	1	1.8E-05	1.8E-05	7.11E-27	1.22E-28	6.63E-10
4	-1	1.8E-05	1.8E-05	7.09E-27	1.79E-28	1.63E-10
3	2	1.8E-05	1.8E-05	1.21E-09	1.62E-09	1.68E-09
3	-2	1.8E-05	1.8E-05	1.16E-09	2.20E-09	2.24E-09
2	3	1.8E-05	1.8E-05	2.69E-27	6.82E-28	3.93E-10
2	-3	1.8E-05	1.8E-05	1.08E-27	1.59E-27	2.35E-10
1	4	1.8E-05	1.8E-05	7.77E-11	5.31E-10	5.55E-10
1	-4	1.8E-05	1.8E-05	2.09E-10	3.49E-10	3.70E-10
0	5	0.0E+00	3.6E-05	1.37E-26	5.48E-27	9.37E-11
6	0	3.6E-05	0.0E+00	2.24E-09	1.65E-09	1.64E-09
5	1	1.8E-05	1.8E-05	2.74E-28	4.68E-29	6.53E-11
5	-1	1.8E-05	1.8E-05	2.35E-28	8.57E-29	2.08E-11
4	2	1.8E-05	1.8E-05	1.49E-10	1.63E-10	1.66E-10
4	-2	1.8E-05	1.8E-05	4.80E-11	1.06E-10	1.07E-10
3	3	1.8E-05	1.8E-05	5.55E-28	1.78E-28	8.94E-11
3	-3	1.8E-05	1.8E-05	7.28E-28	1.02E-28	1.96E-11
2	4	1.8E-05	1.8E-05	6.74E-11	8.74E-11	8.47E-11
2	-4	1.8E-05	1.8E-05	3.62E-11	1. 22 E-11	9.02E-12
1	5	1.8E-05	1.8E-05	1.16E-27	4.70E-28	5.52E-12
1	-5	1.8E-05	1.8E-05	5.13E-28	9.87E-28	8.16E-12
0	6	0.0E+00	3.6E-05	6.07E-13	1.52E-11	9.43E-12

Tune scan simulation focus on x-y coupling

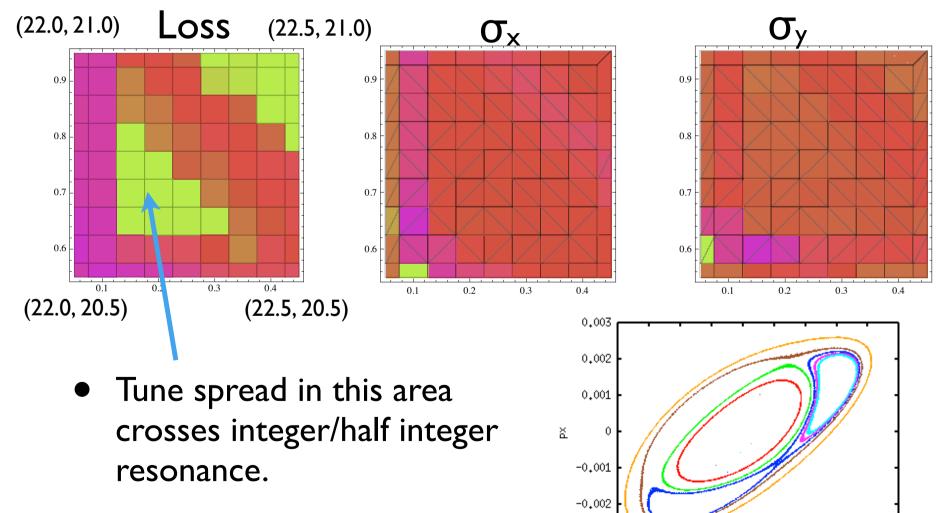
- $N_p=2.5 \times 10^{13}$, BF=0.2, $\epsilon=40 \ \mu m$ (parabolic)
- $21.5 < v_x < 22.5, 20.0 < v_y < 21.0, \Delta v = 0.01$
- Frozen potential at 1st turn.
- Loss and beam size evolution during 5000 turn. Injection time ~25,000 turn.





Use alignment error

not measured optics



-0.003 -0.02-0.015-0.01-0.005 0 0.005 0.01 0.015 0.02 0.025

Coupling correction

 $M(s)M_{SQ} = BU \begin{pmatrix} I_2 & P_{SQ} \\ S_2 P_{SQ}^t S_2 & I_2 \end{pmatrix}_0 B^{-1}M_{SQ} = BU \begin{pmatrix} I_2 & P_{SQ} \\ S_2 P_{SQ}^t S_2 & I_2 \end{pmatrix}_{cor} B^{-1}$

• M_{SQ} is determined so that $P_{SQ,cor}$ has following form

$$P_{SQ,cor} = \left(\begin{array}{cc} -S_{-} & -C_{-} \\ C_{-} & -S_{-} \end{array}\right)$$

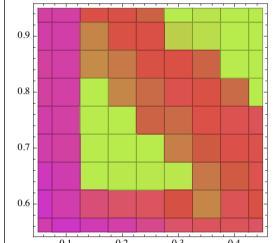
so-called sum resonance correction Eliminate $\Phi_x + \Phi_y$ oscillation in R near s

• M_{SQ} is determined so that $P_{SQ,cor}=0$

so-called sum and diff resonance correction Eliminate $\Phi_x + \Phi_y$ and $\Phi_x - \Phi_y$ oscillation in R near s not all s

Effect of sum resonance correction

Before coupling correction



0.24172,	0.26387,	0.01219,	0.01266,	0.00271,	0.00000,	0.00002,	0.00000,	0.00000
0.28408,	0.28899,	0.00102,	0.00965,	0.01301,	0.00009,	0.00004,	0.00000,	0.00000
0.21697,	0.27194,	0.00083,	0.00132,	0.01038,	0.01133,	0.00249,	0.00000,	0.00000
0.22282,	0.26495,	0.00000,	0.00094,	0.00194,	0.01685,	0.01038,	0.00199,	0.00000
0.28455,	0.24889,	0.00000,	0.00000,	0.00264,	0.00193,	0.01384,	0.01884.	0.02295
0.30150,	0.23188,	0.00000,	0.00000,	0.00000,	0.00115,	0.00359,	0.01391,	0.01640
0.54120,	0.35528,	0.00000,	0.00001,	0.00001,	0.00001,	0.00138,	0.00344,	0.01792
0.65862,	0.32230,	0.06533,	0.03976,	0.03324,	0.00751,	0.00094,	0.02249,	0.00970
0.32307,	0.66829,	0.41992,	0.26686,	0.11868,	0.04130,	0.02884,	0.02768,	0.03626

 $-\Delta N/N_0$

 $-\Delta N/N_0$

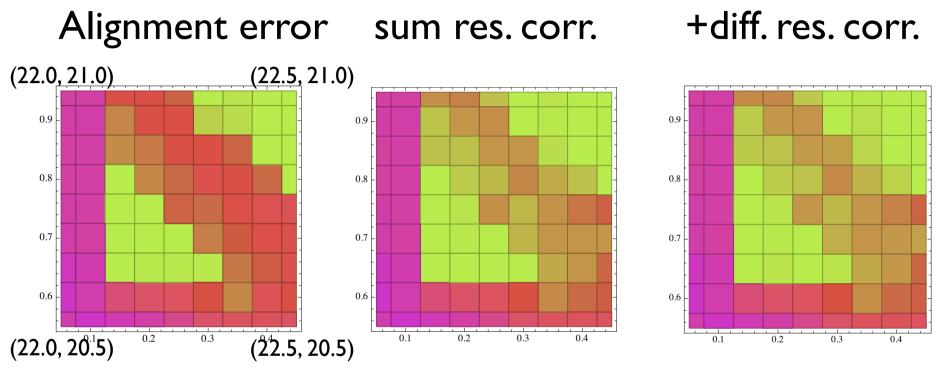
(22.0, 20.5)^{0.2} ^{0.3} ^{0.4} (22.5, 20.5) • After coupling correction

ŀ								-
0.9								1
-								-
ŀ								-
t								
0.8								
ŀ								-
ŀ								-
[
0.7								-
ŀ								-
Ē								
-								-
0.6								-
ŀ	_							-
Ľ			1 1	0.2	 0.3	1 1		
		0.1		0.2	0.3		0.4	

0.28466,	0.28801,	0.00015,	0.00064,	0.00081,	0.00000, 0.00000, 0.00063,	0.00001,	0.00000,	0.00000
0.22289,	0.26567,	0.00000,	0.00011,	0.00021,	0.00094, 0.00025,	0.00035,	0.00017,	0.00000
0.54129,	0.35556,	0.00000,	0.00000,	0.00000,	0.00027, 0.00000,	0.00038,	0.00066,	0.00237
					0.00724, 0.04163,			

Significant improvement 1/10 requirement <0.001

Further correction



• No remarkable effect for the further correction.

0.23975,	0.25333,	0.00090,	0.00094,	0.00012,	0.00000,	0.00001,	0.00000,	0.00000
0.28440,	0.28698,	0.00011,	0.00061,	0.00066,	0.00000,	0.00003,	0.00000,	0.00000
0.21742,	0.27027,	0.00012,	0.00016,	0.00056,	0.00048,	0.00006,	0.00000,	0.00000
0.22233,	0.26460,	0.00000,	0.00010,	0.00015,	0.00090,	0.00028,	0.00008,	0.00000
0.28516,	0.24857,	0.00000,	0.00002,	0.00062,	0.00021,	0.00063,	0.00104,	0.00250
0.30219,	0.23224,	0.00000,	0.00001,	0.00000,	0.00031,	0.00067,	0.00058,	0.00046
0.54274,	0.35504,	0.00000,	0.00002,	0.00000,	0.00002,	0.00038,	0.00059,	0.00235
0.65841,	0.31872,	0.06361,	0.03943,	0.03149,	0.00701,	0.00081,	0.00203,	0.00294
0.32236,	0.66705,	0.41685,	0.26381,	0.11680,	0.04113,	0.02938,	0.02763,	0.03259

Summary

- Measurement of x-y coupling has been performed in J-PARC MR.
- β, α, Φ are reasonable, but R is not accurate.
- R is accurate near the coupling resonance.
- Space charge simulation SCTR(PIC) showed x-y coupling at sextupoles is dominant. Effect of β modulation is weak.
- Resonance width for measured optics was estimated. Not fruitful result at the present.
- Envelope theory with the x-y coupling is presented in HB2012.

Summary II

- Tune scan for space charge induced beam loss was performed.
- The present operating point of J-PARC MR is in good area.
- However x-y coupling pollutes the area upper right of the resonance line, $V_x+V_y=n$.
- Coupling correction recovers a certain amount.