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Motivation 

 Muon cooling channel design -  

http://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4358 
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requires knowledge of -functions, 

with fixed -s can be used as a 

rough approximation 

beam-beam 

elements zyxu
m

mumu ,,,2  

observation point, 

0  and/or  m 

alternatively 

T

0

)0(

0

)( MM kk

k

 

does not require knowledge of k 

in a simple kick-rotate scheme 

(but does require i, i=0,…, k-1) 

 ”Express” space-charge modeling (e.g. with MADX beam-beam elements) 



Outline 

 How to suppress halo contribution to covariance matrix in a self-consistent 

way to obtain right sizes for the space charge forces computation? -

Multidimensional case please! 

- Iterative procedure for nonlinear fit of particle distribution in the phase space 

with a Gaussian or other smooth function. 

 How to find the normal mode emittances (eigen-emittances) when optics 

functions are not known? 

- Eigen-emittances as well as optics functions can be determined from the 

covariance matrix. 

 (Extremely fast & simple!) exponential fit of particle distribution  when the 

optics functions are known – already implemented in MAD-X, but not 

described anywhere. 
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Definitions 

Covariance matrix (- matrix)  
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Basic assumption: particle distribution is a function of quadratic form  

Energy deviation (disguised as momentum) 
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How to Suppress Halo Contribution? 

And to do this in a self-consistent way? 

- a simple heuristic method is to introduce weights proportional to some 

degree of the distribution function. This leads to an iterative procedure  
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 For Gaussian                                            ,  being a fitting parameter (0<<1) 

This method is imprecise and ambiguous  something based on a more 

solid foundation is needed. 

Square root of  from eq.(1) averaged over 25 

realizations of superposition of 1D Gaussian 

distributions with  =1(90%) and  =3(10%)  
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Square root of  from eq.(1) averaged over 25 

realizations of 1D Gaussian distribution with    

 =1as function of the number of particles N. 

Eigen-Emittances from Tracking – Y.Alexahin,                                                         SC13 Workshop 04/17/2013 



Nonlinear Fit of the Klimontovich Distribution 

or the maximization problem for the 1st term in the r.h.s. taken with the 

opposite sign 
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where  is the fraction of particles in the beam core, 

via the minimization problem 
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Rigorous Iterative Procedure 
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We can keep  fixed (i.e. set the fraction of particles taken into account) 

Then for - matrix we get 

(Mathematics is presented in the cited MAP note) 

For  1 some damping is necessary in n=6 case to avoid oscillations:   

By differentiating                       w.r.t. fitting parameters we recover 

equations which can be solved iteratively. 

For average values of coordinates the equations coincide with heuristic 

ones with =1 
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Rigorous Iterative Procedure (cont’d) 

Equations for average values of coordinates remain the same, 

whereas for - matrix we obtain expression with an extra factor of 2 (!) 

compared to the heuristic one 
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Damping is not necessary in this case. 

For n=6 in all cases just  20-30 iterations are required to achieve 

precision 10-6 , it takes Mathematica ~13 seconds with N= 104 on my 

home PC.  For a Fortran or C code it will be a fraction of a second. 

We can try to find the optimal fraction of particles  for the fit. 

From equation                                 we get 0),,(  
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1D Precision Test 
9 

N 

Square root of  averaged over 25 

realizations of 1D Gaussian distribution with 

 =1as function of the number of particles N. 
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Square root of  averaged over 25 realizations 

of superposition of 1D Gaussian distributions 
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Realistic Example 
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Projections onto the longitudinal coordinate (left) and  (right) of the original particle 

distribution (cyan bars) and of its Gaussian fit with  =1 and  =fit (red and blue 

solid lines respectively). 

N.B. Projection of the Gaussian distribution onto the mth axis in a multidimensional 

case is proportional to 
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Eigen-Emittances from - matrix  

With - matrix known, how to find the normal mode emittances? 

- - matrix has positive eigenvalues but they are useless unless the matrix of 

transformation to diagonal form is symplectic (generally not the case) 

-  solution suggested by theory developed by V.Lebedev & A.Bogacz : 

Consider a product                  of inverse - matrix and symplectic unity matrix  
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Matrix  has purely imaginary eigenvalues which are inverse eigen-emittances : 
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Eigen-Vectors of Matrix   

Eigen-vectors provide information on - and dispersion functions : 

12 

iiii vvvv Im,Re
///

Using real and imaginary parts of eigen-vectors                                                

as columns we can build a matrix: 

},,,,,{V
/////////

553311 vvvvvv 

).
1

,
1

,
1

,
1

,
1

,
1

diag(,SVV
332211

1




which is symplectic, VtSV=S,  and brings  to diagonal form: 





 1

3

1

3

1

2

2

2

121 V,2),(),( 



 


 
m m

m

m m

mm J

The quadratic form  takes the form: 

3,2,1,)(,)(,)(
2

52

2

32

2

12  mmsmmymmxm vvv 

.,
56655566

56355536

56655566

56155516

VVVV

VVVVy
D

VVVV

VVVVx
D yx













Eigen-Emittances from Tracking – Y.Alexahin,                                                         SC13 Workshop 04/17/2013 



Exponential Fit 
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If the optics is known – and therefore matrix V of eigen-vectors – we can 

find action variables of particles: 
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The fitting is reduced to 3 one-dimensional exponential fits! 

Actually it is better to fit the integrated distribution function: 
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Exponential Fit (cont’d) 
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The corresponding part of the Klimontovich distribution (integrated over all 

other variables) 
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Exponential Fit (cont’d) 
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Now let us numerate particles in the order of increasing Jk 

take                        at all  J=Jk and equiate it with  

Taking simple average over all particles we get  

)](1log[ Jg

The only (complicated) thing to do is to re-order the particles! 

This formula gives a precise result in absence of halo, but 

provides only moderate (~1/J) suppression of tails. 
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