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Motivation

e "Express” space-charge modeling (e.g. with MADX beam-beam elements)

observation point,
%, and/or g,

does not require knowledge of X,
in a simple kick-rotate scheme

but does require X, i=0,..., k-1
(K Moﬁk'z(o) 'MLK ( q . )

alternatively
beam-beam
elements

- ~

2
Oy :Z/Bumgm’ u=XY,1
m

requires knowledge of B-functions,
with fixed B-s can be used as a
rough approximation

e Muon cooling channel design -

http://map-docdb.fnal.gov/cgi-bin/ShowDocument?docid=4358
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Qutline

e How to suppress halo contribution to covariance matrix in a self-consistent
way to obtain right sizes for the space charge forces computation? -
Multidimensional case please!

- Iterative procedure for nonlinear fit of particle distribution in the phase space
with a Gaussian or other smooth function.

e How to find the normal mode emittances (eigen-emittances) when optics
functions are not known?

- Eigen-emittances as well as optics functions can be determined from the
covariance matrix.

o (Extremely fast & simple!) exponential fit of particle distribution when the
optics functions are known — already implemented in MAD-X, but not
described anywhere.
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Definitions

Phase space vector:
z={x, P, Y, P,,s—Ccft, o}
Canonical momenta in units of the reference value p,=mc/,:
e
o=+ AN P
Energy deviation (disguised as momentum)
5=y =7l B3

Covariance matrix (X- matrix)

N N
Zi,j :%Zgi(k)é/fk)’ é,i(k) = Zi(k) —Z;, I :%Zzi(k)’ i1=1..,6
k=1 k=1

Basic assumption: particle distribution is a function of quadratic form

Q)= (€2 =D 6(E 0 = X 5¢

i, j=1
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How to Suppress Halo Contribution?

And to do this in a self-consistent way?

- a simple heuristic method is to introduce weights proportional to some
degree of the distribution function. This leads to an iterative procedure

(k) (k) k) _7 (k) =~ (k)
Z _Zwkz /ZWk, ¢ =1 Zwkg“ . /ZWk, 1)
For Gau53|an W, _exp[— " Z‘lg“ ("))] o belng a flttlng parameter (O<a<1)
21/2 21/2
1.00 /\J‘\ [
0.95; a=0.1 " M
! i a=0.1
0.00 Lor
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> oo 2 =05
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0'8f ‘ ‘ ‘ ‘ ‘ ‘
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Square root of X from eq.(1) averaged over 25 Square root of X from eq.(1) averaged over 25
realizations of 1D Gaussian distribution with realizations of superposition of 1D Gaussian
o =1as function of the number of particles N. distributions with o=1(90%) and o =3(10%)

This method is imprecise and ambiguous = something based on a more
solid foundation is needed.
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Nonlinear Fit of the Klimontovich Distribution

6=+ d(z-2) = 3 T30z, - 1)

k=1 i=1

We want to approximate it with a smooth function, e.g. Gaussian

_ n _l =)
F(g)—(zﬁ)n,zmexp[ 2(£’2 9]

where 7 is the fraction of particles in the beam core,
via the minimization problem

TT| F-G| dz..dz, = T...Oj)(F2 —-2FG)dz,..dz, + oj)...TGZdzl...dzn — min

—00 —0o0 —0o0 —0o0 —0o0 —00

or the maximization problem for the 15t term in the r.h.s. taken with the
opposite sign

M(Z,Z,7) = T...T(ZFG—FZ)dzl..dzn =

—00 —00

N

For n=6 there is n(n+3)/2+1=28 fitting parameters — convergence too slow
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Rigorous lterative Procedure

By differentiating M (Z.Z.7)  w.rt. fitting parameters we recover
equations which can be solved iteratively.

For average values of coordinates the equations coincide with heuristic
ones with a=1

i (k) exp[ é/(k) —1éz(k))]/zexp[ _(é/(k) _1§(k))] g(k) z(k) z
szll...akiwk.../gwk

for weightd particles)
We can keep 7 fixed (i.e. set the fraction of particles taken into account)

Then for Z- matrix we get

,,—%Z <k>g;k>exp[—%(g‘“,z-lg(”)]/( Zexp[ ;“) '%‘”)]—Tmlj

For n -1 some damping is necessary in n=6 case to avoid oscillations:
>0 =1-d)zY 4 dxP™™ - d~0.8

(Mathematics is presented in the cited MAP note)
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Rigorous Iterative Procedure (cont’d)

We can try to find the optimal fraction of particles 7 for the fit.

. d _
From equation - M(zZ,Z,7)=0 we get
n

2n/2 N

I e N

Equations for average values of coordinates remain the same,

whereas for - matrix we obtain expression with an extra factor of 2 (1)
compared to the heuristic one

%, =2) cOc el -2 (s ‘1C(k))]/2e><p[ (€3

Damping is not necessary in this case.

For n=6 in all cases just 20-30 iterations are required to achieve
precision <10, it takes Mathematica ~13 seconds with N= 104 on my
home PC. For a Fortran or C code it will be a fraction of a second.
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1D Precision Test
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Realistic Example

-70 0 70 -03 0 03
5 - vyt (cm) o

Projections onto the longitudinal coordinate (left) and ¢ (right) of the original particle
distribution (cyan bars) and of its Gaussian fit with n» =1 and n =7, (red and blue
solid lines respectively).

N.B. Projection of the Gaussian distribution onto the mt axis in a multidimensional
case is proportional to

€X {_ % (2_1)mm é’rﬁ [2 - (Zl)mmzmm]}
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Eigen-Emittances from X- matrix

With X- matrix known, how to find the normal mode emittances?

- X- matrix has positive eigenvalues but they are useless unless the matrix of
transformation to diagonal form is symplectic (generally not the case)

- solution suggested by theory developed by V.Lebedev & A.Bogacz :

Consider a product Q=SX™" of inverse - matrix and symplectic unity matrix

0 1 0 0 0 O
-1 0 0 0 0 O
52000100
0 0 -1 0 0 O]
0 0 0 0 0 1
0 0 0 0 -1 0

Matrix Q2 has purely imaginary eigenvalues which are inverse eigen-emittances :

o= a =1 m=123

m m

(Again, mathematics is presented in the cited MAP note)
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Eigen-Vectors of Matrix Q

. . . . / 11
Using real and imaginary parts of eigen-vectors v; =Rewv;, v; =Imy;
as columns we can build a matrix:

V ={v;,~0;,V5,—Vs, Vs, —Ve }
which is symplectic, VtSV=S, and brings Q to diagonal form:
V'QVv=SE  E=diag(—,—,—,—,—, )
The quadratic form ® takes the form:

D = (é/ 2—15) N (é;, —aé:) Z §2m—1 + §2m ZZ_ _ V—l g

m —1‘9

Eigen-vectors provide information on - and dispersion functions :
Ime ‘(T)Zm)l‘ ym ‘((VZm)?,‘ sm ‘(va)S‘ m :1' 2’ 3

_X _ V16V55 _V15V56 D = y _ V36V55 _V35V56 _
o VesVes —VesVeg s VesVes —VesVsg
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Exponential Fit

If the optics is known — and therefore matrix V of eigen-vectors — we can
find action variables of particles:

dy = Gt E=VC

Ignoring the actual distribution in canonical angles we may look for
distribution in the form

3
= ep[-> 3,/ e,]1=FF,F
(272')3818283 Xp[ — m m] 1" 2" 3

The fitting is reduced to 3 one-dimensional exponential fits!

Actually it is better to fit the integrated distribution function:

27 N
fo(30) = [do [ F,()dx=1-exp[-J, / &,]
0 0
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Exponential Fit (cont’d)

The corresponding part of the Klimontovich distribution (integrated over all
other variables)

G(J)z%i&(\] _3) - g(J)=IG(x)dx=%i0(J 1)

where 0(X) is an asymmetric Heaviside step-function

0, x<0
O(x)=10<a<l x=0 Parameter o is empirically adjusted
1 X >0 (a=0.1 is slightly better than 1 or 0)

9(J)

o 1

alN |
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Exponential Fit (cont’d)

15

Now let us numerate particles in the order of increasing J,
take log[l-g(J)] atall J=J, and equiate it with log[1—f(J)]=-J/&

Taking simple average over all particles we get

N J—
S o e L

NS J, N

The only (complicated) thing to do is to re-order the particles!

This formula gives a precise result in absence of halo, but
provides only moderate (~1/J) suppression of tails.
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