Half Integer and High Intensity Limits on the ISIS Ring

C M Warsop,
D J Adams, B Jones, B G Pine, H V Smith, R E Williamson

ISIS, Rutherford Appleton Laboratory, UK

Space Charge Workshop, CERN, April 16-19, 2013

Contents

- Introduction ~ The ISIS Synchrotron
- Review of Half Integer Studies on ISIS ~ Purpose \& Plan

ISIS 2D Calculations ~ Coherent Theory
ISIS 2D ORBIT PIC Simulations ~ Limits, Loss, Halo

- Real Experiments to Measure Halo ~Simulations and Results
- Interpretation of Results ~ Future Work
- Relevance to ISIS Operations and Upgrades
- Acknowledgements

The ISIS Synchrotron

- Space charge peaks during trapping Low energy \& bunching: $\Delta Q_{\text {incoh }} \sim-0.6$
- Losses

Fast longitudinal capture Transverse space charge, ... Loss limited machine
Circumference: 163 m
Energy Range: $\quad 70-800 \mathrm{MeV}$
Rep Rate:
Intensity:
Mean Power:
Losses:
Injection:
Acceptances:
RF System: 50 Hz
$2.5 \times 10^{13} \operatorname{ppp}\left(3.0 \times 10^{13}\right)$ 160 kW (200 kW)
Inj: 2\%, Trap: <5\%, Acc/Ext <0.1\%
130 turn, charge-exchange (not chopped) collimated $\sim 300 \pi \mathrm{~mm} \mathrm{mr}$
$\mathrm{h}=2, \mathrm{f}_{2}=1.3-3.1 \mathrm{MHz}, \mathrm{V}_{2} \sim 160 \mathrm{kV} /$ turn $\mathrm{h}=4, \mathrm{f}_{4}=2.6-6.2 \mathrm{MHz}, \mathrm{V}_{4} \sim 80 \mathrm{kV} /$ turn
Extraction:
Tunes: Single Turn, Vertical
$\left(Q_{x}, Q_{y}\right)=(4.31,3.83)$ (variable)

ISIS Tune Shifts

- What are we trying achieve?

Understand the high intensity limits of ISIS minimise and control loss during operations better understanding for upgrades
We want to understand what causes loss!

- Normal ISIS operations: 3D (6D) process with rapid ramp (RCS) Being studied: benchmarking 3D ORBIT models of machine Half Integer: main focus on simpler 2D coasting beam (Storage Ring Mode) Long term plan: SRM coasting \rightarrow SRM bunched \rightarrow RCS
- Half integer study so far: 2D (4D ($x, x^{\prime}, y, y^{\prime}$)) coasting beams SRM Analytical models, Simulation models \rightarrow Experimental verification Confirm our models with a detailed experimental study of simpler process Work our way towards the more challenging RCS case

Calculations of Envelope Modes for ISIS

- Calculate coherent mode frequencies from envelope equation General formula: non-equal beam size (a, b) and tune ($Q_{x^{\prime}} Q_{y}$) [Sacherer]

$$
w^{2}=2\left(Q_{x o}{ }^{2}+Q_{y o}{ }^{2}\right)-\frac{\left(3 a^{2}+4 a b+3 b^{2}\right)}{2(a+b)^{2}} w_{p}{ }^{2} \pm \sqrt{4\left(Q_{x o}{ }^{2}-Q_{y o}{ }^{2}\right)^{2}+6 \frac{(a-b)}{(a+b)}\left(Q_{x o}-Q_{y o}\right)\left(Q_{x o}+Q_{y o}\right) w_{p}{ }^{2}+\frac{\left(9 a^{4}-14 a^{2} b^{2}+9 b^{4}\right)}{4(a+b)^{4}} w_{p}{ }^{4}}
$$

ISIS: $Q=(4.31,3.83)$, calculate for nominal (a, b), intensities $\quad w_{p}^{2}=\frac{2 N \cdot r_{0} \cdot R}{\pi \cdot \cdot \cdot a \cdot b \cdot \frac{1}{\beta^{2} \gamma^{3}}}$
Coherent modes w for various approximations: large tune split Equal (a, b) reasonable approximation (no dispersion)

Numerical Solution of Envelope Equation
Envelope Amplitude and Spectra

- So expect "coherent advantage"

$$
Q_{0}-C \cdot \Delta Q_{s c}=\frac{n}{2} ; \quad C=\frac{5}{8}
$$

Summary of Calculations for ISIS

2D ORBIT Simulations: Near Resonance

- PIC Simulations: Track RMS matched waterbag beam 100 turns $2 Q_{y}=7$ driving term, nominal $Q, \varepsilon_{x, y, m s}=65 \pi \mathrm{~mm} \mathrm{mr}$, ISIS AG lattice, 70 MeV
- Increase intensity: push toward coherent resonance

Get: (1) "stable beating" then (2) envelop growth, $\varepsilon_{r m s}$ increase

Envelope Frequencies Incoherent Tunes Envelope Evolution

Turn 100:

2D ORBIT Simulations: Near Resonance

- Repeat simulations: scan $\varepsilon_{r m s}$ vs intensity
- Approximate 2D model of ISIS drive $2 Q_{x}=8,2 Q_{y}=7$,strength $\delta Q_{s b} \sim 0.02$
- As ramp intensity: as expect exceed incoherent limit $\varepsilon_{r m s}$ growth before coherent limit
- $\operatorname{So} \varepsilon_{r m s}$ grows between the limits How relevant are they?
- What causes $\varepsilon_{r m s}$ growth? Can we understand and minimise it?

2D ORBIT Simulations: Envelopes

- Look at envelope evolution vs intensity as approach resonance As before, approximate 2D model of ISIS: drive $2 Q_{x}=8,2 Q_{y}=7, \delta Q_{s b} \sim 0.02$

Envelope evolution over 100 turns

- Apparently transition from "beating" to growth Mechanism: Single particle process ~Envelope Instability?

2D ORBIT Simulations: Halo

- Look at halo as a function of mismatch and intensity As before, approximate 2D model of ISIS. Normalised (Y, Y^{\prime}) phase space Particles coloured by initial emittance to indicate source of halo

How do these ideas relate to beam loss?

- How do particles get lost - what is mechanism or model?

Loss = particles hitting aperture limit or collimator!

- Coherent Model
$\varepsilon_{r m s}$ conserved: envelope beating pushes particles to aperture
- Incoherent Model
$\varepsilon_{r m s}$ grows: single particle growth to aperture (envelope motion?)
- Real Beam: perhaps both

If $\varepsilon_{r m s}$ conserved coherent model is good
Otherwise behaviour is more complicated

- Here we assume enough aperture for envelope motion

Study $\varepsilon_{r m s}$ growth: Can we understand, control and minimise it?
Results indicate onset of $\varepsilon_{r m s}$ growth is 1D process - so we study this
Drive in one plane: 1D (y, y^{\prime}) particle-core, parametric resonance effect?
Look at details of simulations then try and measure experimentally

2D ORBIT Simulations: Halo Structure

Investigate behaviour of halo

- Check single particle trajectories

- As before, 2D ISIS model
- Drive in one plane $2 Q_{y}=7$
- Look at $\left(Y, Y^{\prime}\right)$ for $\varepsilon_{x} \approx 0$
$\left(Y, Y^{\prime}\right)=$ normalised $\left(y, y^{\prime}\right)$
- Halo Structure Study (1D, $\varepsilon_{x}=0$)

ORBIT with diagnostic "testHerd": just "feels" Locks to envelope motion: Poincaré plot Similar behaviour to analytical model [1] (KV, self consistent, driven, equal tunes, 1D)
[1] M. Venturini, Resonance Analysis for a Space Charge Dominated Beam in a Circular Lattice, PRST-AB, V3, 034203, 2000.
[2] C M Warsop et al., Space Charge Loss Mechanisms Associated with Half Integer Resonance on the ISIS Synchrotron, Proc. EPAC08, p373.

2D ORBIT Simulations: Halo Structure

Motion in x and y planes

- What about halo for $\varepsilon_{x} \neq 0$

IE particle motion in x and y planes Just driven in y plane

- Plots show (Y, Y) as function of ε_{x} Similar for most ε_{x}
- Motion could get complicated! But is it?
- Looks like 1D parametric halo?
- Can we measure it?

2D ORBIT Simulations: Halo Experiments

How to generate halo for experiments

- ORBIT simulations - study of test beam $70 \mathrm{MeV}, \sim 2.5 \mathrm{E} 12 \mathrm{ppp}$

Generate halo with small beams, within aperture
Check envelope resonance of small, non-circular beams

- Envelope frequency and halo vs $\varepsilon_{x^{\prime}}, \varepsilon_{y}$ 2D WB, vary $\varepsilon_{x R M S}, \varepsilon_{y R M S}$ over $5 \rightarrow 65 \pi \mathrm{~mm} \mathrm{mr}$ Compare mode frequency with theory
Push onto resonance and look for halo
- Results

Good agreement theory - ORBIT (RMS equiv.)
Halo as expect - good for experiments!

2D ORBIT Simulations: Real Experiments

- How to configure a real machine for 2D experiments?

Storage Ring Mode: coasting beam, RF off, magnets on constant DC
Realistic painting (not waterbag!)

- Best experiment? How to approach resonance?

Could ramp intensity, tunes, vary ε, driving terms ...

- For these experiments

Inject constant, small, transverse emittances ($\left.\varepsilon_{r m s x} \approx \varepsilon_{r m s y} \approx 20 \pi \mathrm{~mm} \mathrm{mr}\right)$
Inject and store 70 MeV beam (0-1.3E13 ppp over ~ 100 turns)
Set constant lattice $\left(Q_{x}, Q_{y}\right) \approx(4.30,3.63)$
Apply $2 Q_{y}=7$ driving term (amplitude/phase)
Ramp intensity over injection, push toward $2 Q_{y}=7$
Look at beam loss and profiles

- Run ORBIT simulation based on detailed 3D RCS model of ISIS

Will predicts what we should see \sim includes realistic injection

ORBIT Simulation of Real Experiment

- Multiple runs: vary intensity

For $\varepsilon_{r m s}=15 \pm 2 \pi \mathrm{~mm} \mathrm{mr}, Q_{v}=3.60$ predict resonance at $\sim 0.5 \pm 0.1 \times 10^{13} \mathrm{ppp}$ Multiple runs: plot $\varepsilon_{99 \%}$ on turn 299
Clear dependence on driving term

- Single run: evolution over 300 turns
$\varepsilon_{r m s}$ increases as expect (vertical only)
Intensity reaches $\sim 0.5 \times 10^{13} \mathrm{ppp}$ on turn 68
Strong dependence on driving term
Clear growth in second moment
Frequency of $2^{\text {nd }}$ moment near $2 Q_{y}=7$
Expected "halo"

Particle distribution in (y, y^{\prime}) on turn 109

Experiments: Loss Measurements

- Beam loss at coherent limit

Loss increases as approach
See "brick wall" where expect
Beam Current (1V=1E13 ppp) Beam Loss (clipped at > 1V!)

Theory

Coherent EigenModes [Large Split Case]

- Summary of loss measurements: Loss vs I, Loss vs Q Loss vs DT

Experiments: Profile Measurements

- Measure profiles as approach resonance
- Identify as half integer halo?

I and Loss
Control with driving term
$\Delta k(\theta)=k \cos \left(2 Q_{y} \theta+\phi\right)$
$p_{0}: k=0$
$p_{1}: k=0.02 \mathrm{~m}^{-2}, \phi=0$
$p_{2}: k=0.02 \mathrm{~m}^{-2}, \phi=\pi$

- For driven resonance
$\left(y, y^{\prime}\right)$ structure locked to θ rotates $2 Q_{y}$ times around ring
- Effects of these?

Strength: loss
Phase: $\left(y, y^{\prime}\right)$ orientation profile is y projection

Compare with ORBIT simulation

- Same Features

| Measured profile \quad ORBIT profile \quad ORBIT $\left(Y, Y^{\prime}\right)$ |
| :--- | :--- |

- See "Hips" Phase control
- Complicated!

What is the growth process?

- ORBIT Results

Plots: $\left(x, x^{\prime}\right)\left(y, y^{\prime}\right)(\varphi, \Delta E)(x, y)$
Turns: 9, 14, 34, 54, 74, 94, 114

- Main features

Inject beam of constant amplitude (size) Intensity increases: pushes onto coherent mode

- Coherent envelope motion increases
- Non-linear space charge forces increase Conditions for evolving PH
Keep injecting into this structure (may be more complicated!)
- Profiles agree Measurements being refined

Latest Results

Still being processed ... look reasonable

- Vary driving term strength
"Hips" shrink as expect - not simulated yet

$$
\begin{aligned}
& \Delta k(\theta)=k_{n} \cos \left(2 Q_{y} \theta+\phi\right) \\
& p_{2}: k_{1}=0.020 \mathrm{~m}^{-2}, \phi=\pi \\
& p_{2}: k_{2}=0.016 \mathrm{~m}^{-2}, \phi=\pi \\
& p_{2}: k_{3}=0.010 \mathrm{~m}^{-2}, \phi=\pi
\end{aligned}
$$

- Also working on fine rotations of structure ...
- Improve measurements

Detailed lattice measurements, driving terms, optics Profile simulation, voltage scans, tests for halo structure Study of halo behaviour

- Develop beam model

Look at simple simulation and analytical models
(particle-core, with slowly varying waterbag core?)

- Do a better experiment?

Inject and form beam above coherent resonance
Vary quads to slowly ramp Q onto resonance Try to approach resonance from below?

- 3D Study

Experiments with bunched beam in storage ring mode Studies of 3D ORBIT simulations of RCS mode

Summary

- Have outlined calculations and simulations of 2D half integer on ISIS
- Used these to suggest 2D SRM experiments - so we can study a real process
- Now getting good - detailed - agreement between simulation-experiment
- A basis for detailed code benchmarking, developing models, understanding!
- Working on improving accuracy of measurements
- Looking at other experiments: suggestions welcome!
- Will extend to: bunched-storage ring mode and full RCS modes
- So what?

If we can develop a better understanding of loss, perhaps we can achieve a more detailed optimisation of the beam and reach higher intensity?

ISIS Operations and Upgrades

High Intensity Limits

- Presently studying 180 MeV Linac Upgrade Powers ~ 0.5 MW Regime: Main limit transverse Trapped between Head-tail and Half-integer

Resistive-wall
head-tail
instability

Half-Integer

- Important work

Half-integer, Head-tail instability Image effects, working points, ISIS Set code (talk B Pine)
Longitudinal dynamics and stability (talk R Williamson)
Injection, modelling, ...

- Key topics for present operations and ISIS 1-5 MW upgrades

Acknowledgements

- Many thanks to ...

ISIS Diagnostics Section
ISIS Operations

- Thanks for useful discussions with ASTeC/IB

