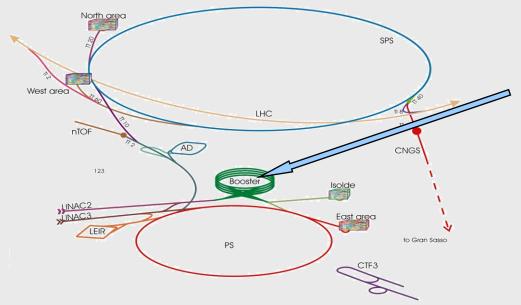


1

Betatron Resonance Compensation at the CERN PS Booster Synchrotron

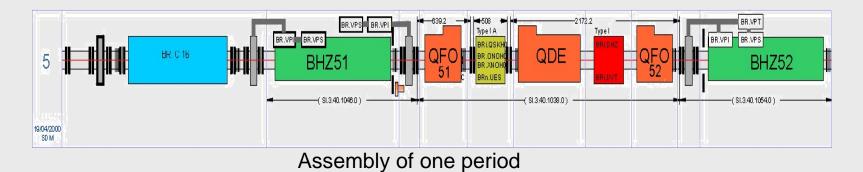
Urschütz Peter (EBG MedAustron)


Outline

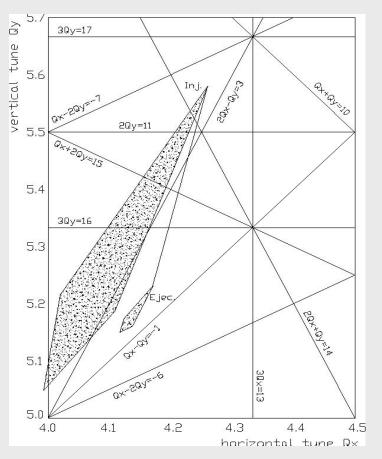
- Brief information on the PS Booster Synchrotron
- Motivation for the betatron resonance compensation
- Measurement set-up, constraints and strategy
- Some measurement results
 - ♦ 3rd order resonance
 - Alternative working point for the PS Booster
- Conclusions

The PS Booster (PSB) consists of 4 superimposed rings.

- 40 years old machine
- The PSB links the Linac 2 and the Proton Synchrotron (PS).
- Direct beam supplier for the On-line Isotope Mass Separator facility (ISOLDE).


The PS Booster ring

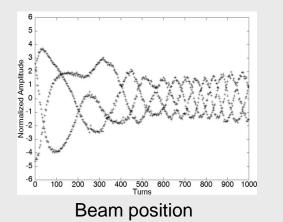
Key data:

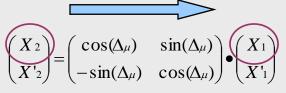

- Radius: 25 m (1/4 of PS)
- 16 identical periods
- Lattice type: regular triplet (QF QD QF)
- Cycle time: 1.2 s
- Multi-turn injection (up to 13 turns)

Protons:

- Energy: at injection: 50 MeV
 - at extraction: 1.4 GeV
- Intensities: up to 10¹³ (in all 4 rings)

Motivation for resonance compensation


PSB tune diagram for high intensity beams.

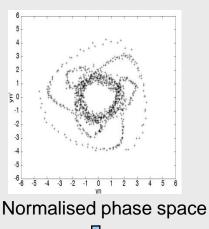

- Large incoherent space charge tune spread (for high intensity beams) – "Necktie" shaped area
- Nominal tunes: $Q_x=4.17$, $Q_y=5.23$
- At injection: Tunes moved to: Q_x =4.26, Q_y =5.58
- Resonances to be considered: 2nd and 3rd order (e.g. 3Q_v = 16)
- PSB offers a variety of multipoles (only up to sextupoles used for resonance compensation).
- Resonance compensation already done 35 years ago (orthogonal search for proper multipole currents)

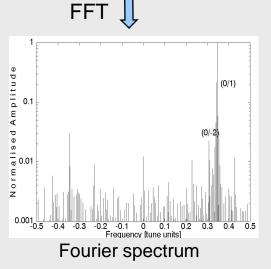
Betatron resonance compensation is mandatory for a satisfactory performance of the PSB!

How to measure and compensate resonances ?

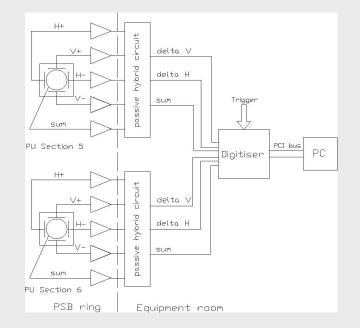
X₁, X₂ from BPMs (normalized amplitudes)

Driving Term		Horizontal Spectral Line	
Line		(1-j+k,m-l)	
Amplitude	$\left h_{jklm} ight $	$(2I_x)^{\frac{j+k-1}{2}}(2I_y)^{\frac{l+m}{2}\frac{j\cdot h_{jk m} }{\sin(\hat{\phi})}}$	
Phase	ψ_{jklm}	$\psi_{jklm} + (1-j+k)\psi_{x_0} - (l-m)\psi_{y_0} - \frac{\pi}{2} + sgn(\hat{\phi})(\frac{\pi}{2} - \hat{\phi})$	


 Table 3.1: Relation between the horizontal spectral lines and the amplitude and phase of the resonant Hamiltonian term [16].


Relation between spectral decomposition of particle motion and Hamiltonian perturbation theory (Normal Form)

Driving terms: h_{jklm} (strength and phase of the resonance) – prop. to


multipole coefficients

Measurement system

- ◆ 2 BPMs were used in the PSB.
- 5 electrode signals were converted into sum and difference signals.
- Digitiser (Acqiris modules):
 - 2 modules with each 4 channels
 - f_{sampl}=500 MS/s (~800 samples/turn)
 - memory: 2MS/channel

record ~2500 turns

- Control and Processing Program
 - Controls the digitiser
 - Graphical user interface
 - Digital data conversion into beam position

Space Charge 2013

Constraints in the PSB

1) Limitation to injection energy (50 MeV)

PSB does not offer a dedicated kicker >> Injection mis-steering had to be used to obtain sufficiently large oscillation amplitudes. Resonance studies were limited to injection energy.

2) Decoherence of the BPM signals due to chromaticity

> Only one sextupole family for chromaticity correction available. Decoherence of one signal in the transverse planes is unavoidable (natural chromaticities: $Q'_x \sim -3.5$, $Q'_y \sim -9.3$)

For purely horizontal or vertical resonances: no problem, chromaticity corrected in one plane.

Limitation if coupling resonances are considered, because both (horizontal and vertical) beam position signals are needed.

Measurement set-up

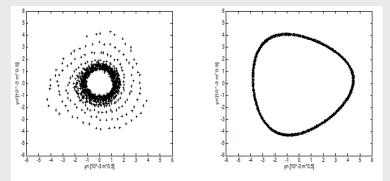
What do we need to determine resonance driving terms?

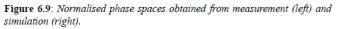
A bunched beam performing coherent oscillations with a reasonably large oscillation amplitude (some mm) over a sufficiently large number of turns (some 100). A decoherence of the signal (chromaticity, amplitude detuning) should be avoided.

Measurement set-up:

> One third of the ring was filled to obtain a quasi-bunched beam (containing 1 to $2 * 10^{11}$ protons).

- > RF was already switched on at injection to avoid longitudinal debunching.
- > Use of injection mis-steering.
- > For each measurement only a single resonance was considered.
 - > Tunes close to resonance condition,
 - Chromaticity adjusted either to zero in one plane or to reasonably low values in both planes (coupling resonances).


Procedure for determination of resonance driving terms

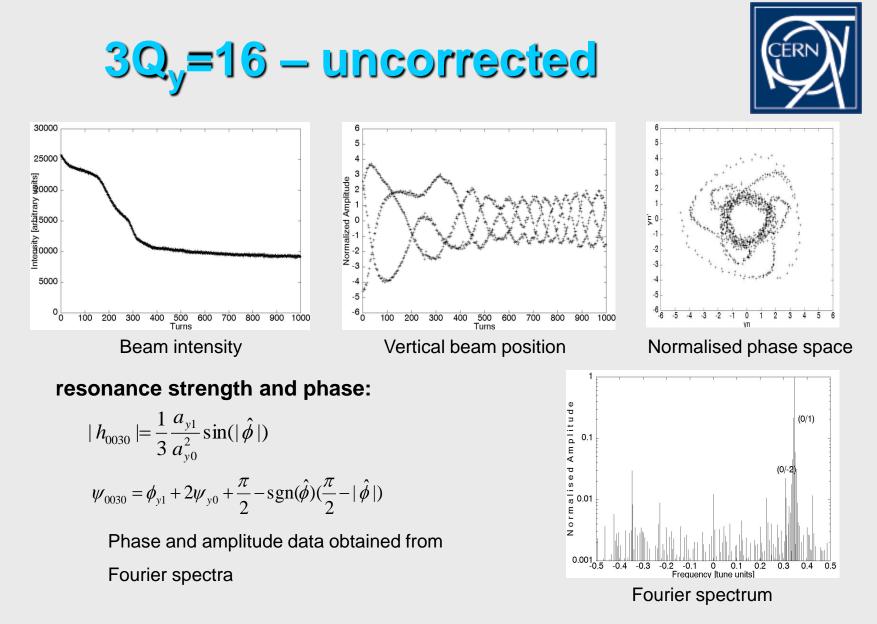


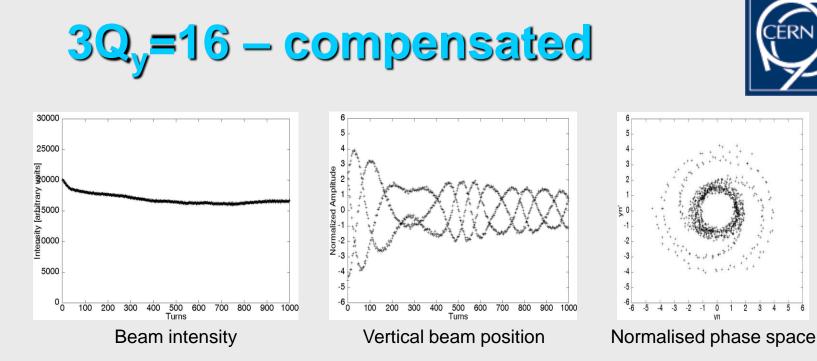
- Measurements for the bare (uncorrected) machine; result: resonance vector
- Reference measurements with a defined multipole excitation (for calibration purposes).
- Simulation of the resonance phases for the compensation elements.
- Calculation of compensation currents for multipoles
- New measurements with compensation currents (if necessary second iteration was done).

Reference measurements and simulation:

(e.g.: Skew Sextupole(XSK2L4) = -45 A)

	measurement	simulation
h ₀₀₃₀ [mm ^{-1/2}]	$15 \pm 1 * 10^{-3}$	14 * 10 ⁻³
Ψ ₀₀₃₀	$157^{o}\pm7^{o}$	347 °


Opposite polarity of the skew sextupole magnet was indeed verified during the shut down period!
Measurement includes contribution from bare machine.

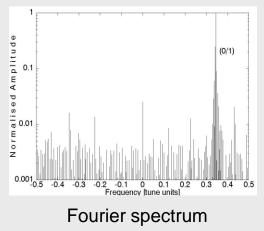

Space Charge 2013

Measurement results: 3Qy=16 resonance (skew sextupole resonance)



- It's a **systematic** resonance (16 periods in PSB)!
- It has to be compensated in standard operation (with skew sextupoles).
- Corresponding resonance driving term: h₀₀₃₀
- Resonance spectral line (in vertical spectrum): (0,-2)
- Tunes: $Q_v \sim 5.35$ (close to resonance condition: $Q_v = 5.333$)
- Interest only in vertical particle motion.
- Vertical chromaticity was corrected to zero.

Urschütz Peter



$$\begin{split} |h_{0030}| &= 9.0{\pm}0.6^*10^{-3} \; mm^{-1/2} \\ \psi_{0030} &= -21^o{\pm}14^o \end{split}$$

Calculated compensation currents (for two independent skew sextupoles):

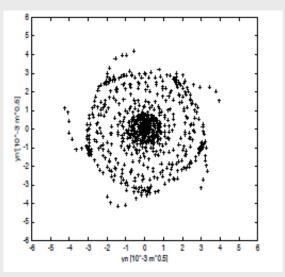
$$I_{XSK2L4} = -29.3 \text{ A}, I_{XSK9L1} = +15.3 \text{ A}$$

Space Charge 2013

Further results...

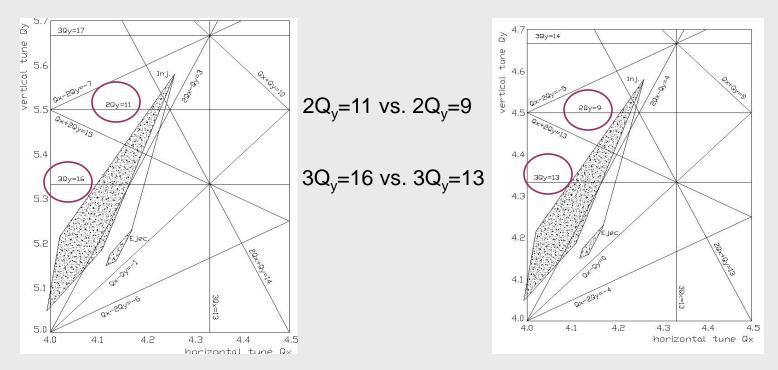
- Further resonances studied and compensated:
 - Quadrupole resonance: 2Q_y = 11
 - ♦ Linear coupling resonance: Q_x Q_y = -1
 - Other third order coupling resonances: $2Q_x Q_y = 3$, $2Q_x + Q_y = 14$, $Q_x + 2Q_y = 15$

e.g.: $2Q_y = 11 - quadrupole$ resonance



Further studies...

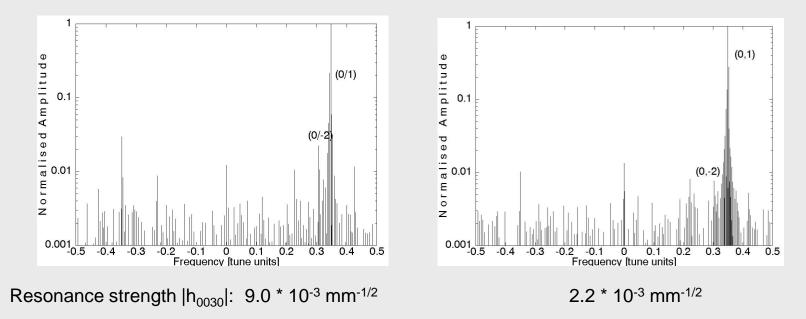
- Studies with different injection mis-steering (oscillation amplitudes)
- Studies with different chromaticities
- By chance we got clear signs of a decapole resonance:
 - ♦ 5Q_y = 27



Fivefold symmetrie due to decapole resonance 5Qy = 27

Alternative working point

- $Q_x = 4.17$, $Q_y = 4.23$ instead of $Q_x = 4.17$, $Q_y = 5.23$ (Q_y is shifted one integer down)
- Main motivation: To avoid the systematic 3^{rd} order $3Q_{y}=16$ resonance.

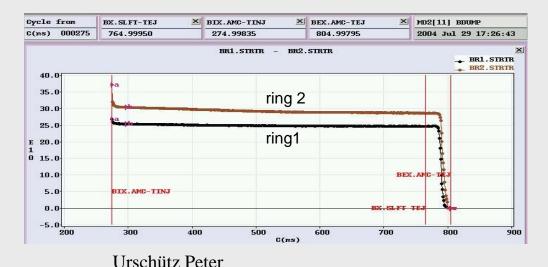

PSB tune diagram for standard working point.

PSB tune diagram for alternative working point.

Alternative working point

- Relevant resonances show clearly smaller intrinsic excitation
- Comparison of results for 3Q_y=16 vs. 3Q_y=13

bare machine component is a factor 4 less for lower working point



Alternative working point

Crossing of $3Q_y = 13$ in rings 1 and 2.

...compensated

No compensation is needed for ring 2!

Conclusions

- All second and third order resonances relevant for operation were analyzed for rings 1 and 2 of the PS Booster.
- The acquisition system used allowed fast and efficient determination of resonance driving terms on the basis of turn-by-turn beam position measurements.
- All relevant resonances were successfully compensated
- Comparative resonance driving term measurements for two different working points; conclusion is that from a resonance excitation point of view, a "lower" working point is preferable.
- PS Booster is still operated with the lower working point.

Thank you for your attention!