

# Halo Mitigation in **Nonlinear Integrable Lattices**

#### ICFA Mini-workshop on Space Charge April 2013

Tech-X Corp. <sup>+</sup> CIPS, University of Colorado

**FermiLab** 

**Oak Ridge National Lab** 

Stephen D. Webb<sup>+</sup>, David L. Bruhwiler<sup>‡</sup>, Dan T. Abell, Kirill Danilov, John R. Cary<sup>‡</sup>

**U.S. DEPARTMENT OF** 

Office of

Science

Sergei Nagaitsev, Alexander Valishev

Viatcheslav Danilov

National Laboratory



<sup>+</sup> swebb@txcorp.com

Friday, April 19, 13



#### Overview

- Linear lattices
- Nonlinear decoherence versus Landau damping
- Nonlinear integrable optics
- Halo mitigation
- Questions & future work



## Linear Lattices Why & Why Not

## Why...

#### Integrable behavior

Why...

#### **Integrable behavior**

PHYSICAL REVIEW

VOLUME 88, NUMBER 5

DECEMBER 1, 1952

#### The Strong-Focusing Synchroton—A New High Energy Accelerator\*

ERNEST D. COURANT, M. STANLEY LIVINGSTON,<sup>†</sup> AND HARTLAND S. SNYDER Brookhaven National Laboratory, Upton, New York (Received August 21, 1952)

Strong focusing forces result from the alternation of large positive and negative *n*-values in successive sectors of the magnetic guide field in a synchrotron. This sequence of alternately converging and diverging magnetic lenses of equal strength is itself converging, and leads to significant reductions in oscillation amplitude, both for radial and axial displacements. The mechanism of phase-stable synchronous acceleration still applies, with a large reduction in the amplitude of the associated radial synchronous oscillations. To illustrate, a design is proposed for a 30-Bev proton accelerator with an orbit radius of 300 ft, and with a small magnet having an aperture of  $1 \times 2$  inches. Tolerances on nearly all design parameters are less critical than for the equivalent uniform-*n* machine. A generalization of this focusing principle leads to small, efficient focusing magnets for ion and electron beams. Relations for the focal length of a double-focusing magnet are presented, from which the design parameters for such linear systems can be determined.

#### **Integrable behavior**

PHYSICAL REVIEW

VOLUME 88, NUMBER 5

DECEMBER 1, 1952

#### The Strong-Focusing Synchroton—A New High Energy Accelerator\*

ERNEST D. COURANT, M. STANLEY LIVINGSTON,<sup>†</sup> AND HARTLAND S. SNYDER Brookhaven National Laboratory, Upton, New York (Received August 21, 1952)

Strong focusing forces result from the alternation of large positive and negative *n*-values in successive sectors of the magnetic guide field in a synchrotron. This sequence of alternately converging and diverging magnetic lenses of equal strength is itself converging, and leads to significant reductions in oscillation amplitude, both for radial and axial displacements. The mechanism of phase-stable synchronous acceleration still applies, with a large reduction in the amplitude of the associated radial synchronous oscillations. To illustrate, a design is proposed for a 30-Bev proton accelerator with an orbit radius of 300 ft, and with a small magnet having an aperture of  $1 \times 2$  inches. Tolerances on nearly all design parameters are less critical than for the equivalent uniform-*n* machine. A generalization of this focusing principle leads to small, efficient focusing magnets for ion and electron beams. Relations for the focal length of a double-focusing magnet are presented, from which the design parameters for such linear systems can be determined.

#### Courant-Snyder invariant

$$\mathcal{J}_i = \frac{1}{2\beta_i(s)} \left[ z_i^2 + (\beta_i(s)z_i' + \alpha_i(s)z_i)^2 \right]$$

#### **Integrable behavior**

PHYSICAL REVIEW

VOLUME 88, NUMBER 5

DECEMBER 1, 1952

#### The Strong-Focusing Synchroton—A New High Energy Accelerator\*

ERNEST D. COURANT, M. STANLEY LIVINGSTON,<sup>†</sup> AND HARTLAND S. SNYDER Brookhaven National Laboratory, Upton, New York (Received August 21, 1952)

Strong focusing forces result from the alternation of large positive and negative *n*-values in successive sectors of the magnetic guide field in a synchrotron. This sequence of alternately converging and diverging magnetic lenses of equal strength is itself converging, and leads to significant reductions in oscillation amplitude, both for radial and axial displacements. The mechanism of phase-stable synchronous acceleration still applies, with a large reduction in the amplitude of the associated radial synchronous oscillations. To illustrate, a design is proposed for a 30-Bev proton accelerator with an orbit radius of 300 ft, and with a small magnet having an aperture of  $1 \times 2$  inches. Tolerances on nearly all design parameters are less critical than for the equivalent uniform-*n* machine. A generalization of this focusing principle leads to small, efficient focusing magnets for ion and electron beams. Relations for the focal length of a double-focusing magnet are presented, from which the design parameters for such linear systems can be determined.

#### Courant-Snyder invariant

This creates...

 $\mathcal{J}_i = \frac{1}{2\beta_i(s)} \left[ z_i^2 + (\beta_i(s)z_i' + \alpha_i(s)z_i)^2 \right]$ 

- Tunes
- Beta functions
- Dispersion

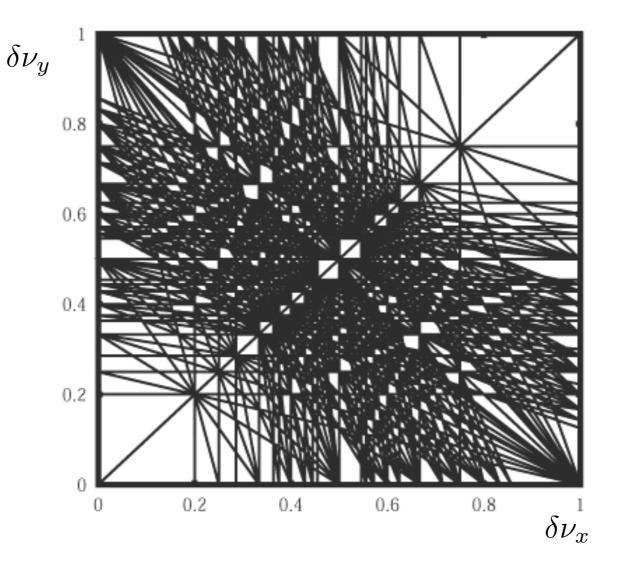
## Why Not...

In a word: **Resonances** 

## Why Not...

#### In a word: **Resonances**

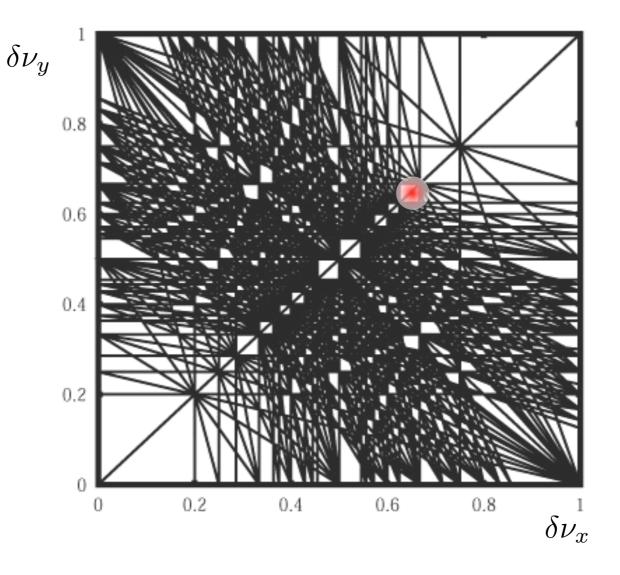
tune spread



## Why Not...

#### In a word: **Resonances**

tune spread





## Nonlinear Decoherence: It's not Landau Damping

### Landau damping

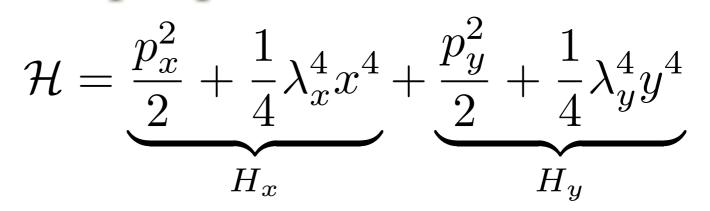
"There is no clear agreement as to which effects can be labeled as Landau damping."

~ A. Hofmann, "Landau Damping", 1987 CERN Accelerator Physics Course

Landau damping (n.) - The process by which a spread of bare frequencies in an <u>ensemble</u> of harmonic oscillators prevents a resonant perturbation from adding energy coherently.

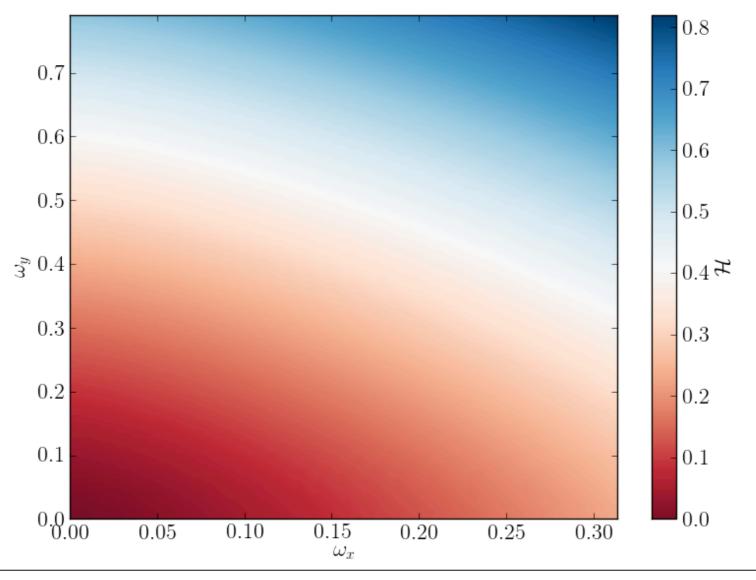
#### An example problem...

Completely integrable Hamiltonian



In action-angle variables

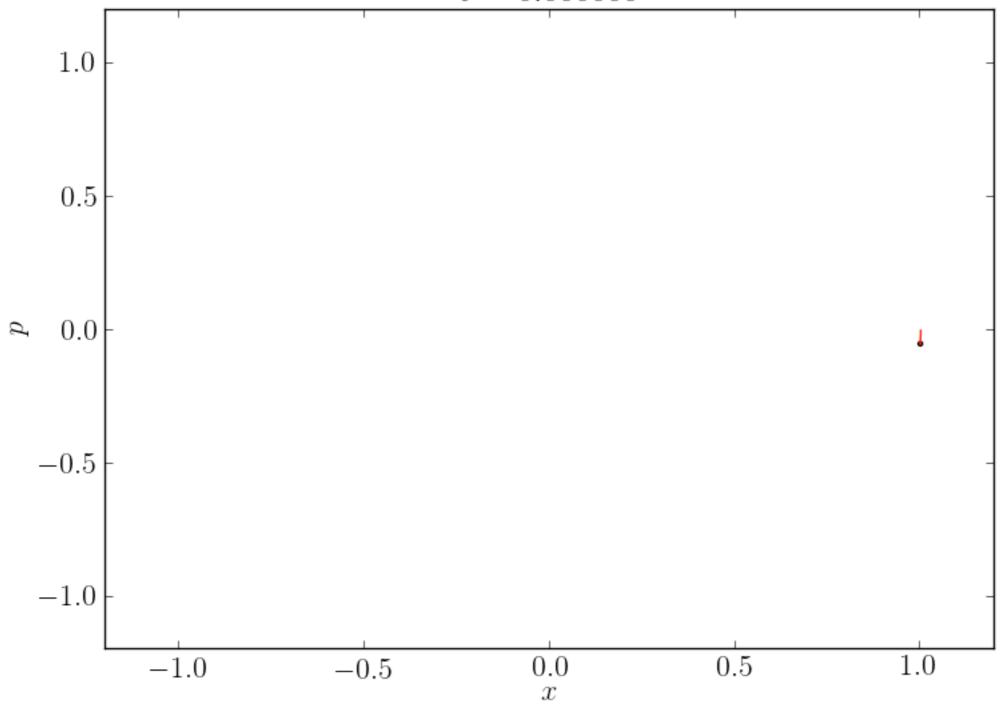
$$\mathcal{K} = \left(\frac{1}{2\alpha}\right)^{4/3} \left\{ \left(\mathcal{J}_x \lambda_x\right)^{4/3} + \left(\mathcal{J}_y \lambda_y\right)^{4/3} \right\}$$



### An example problem...

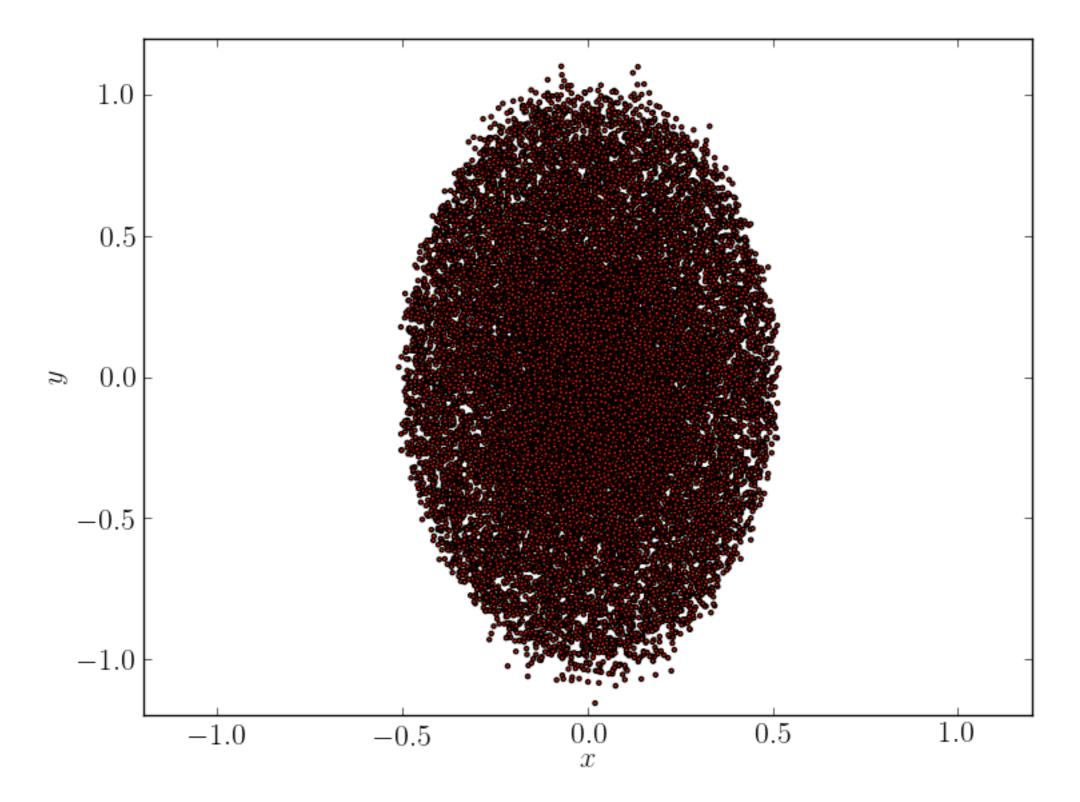
#### An example problem...

t = 0.000000



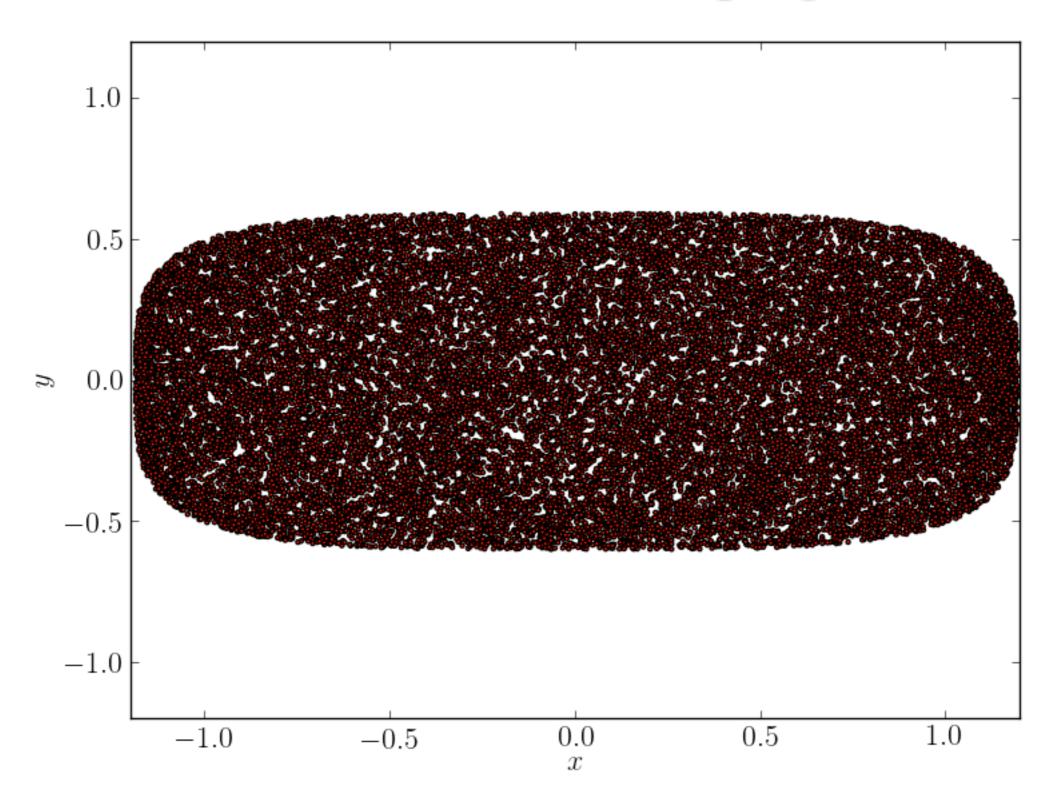
### Landau damping

### Landau damping

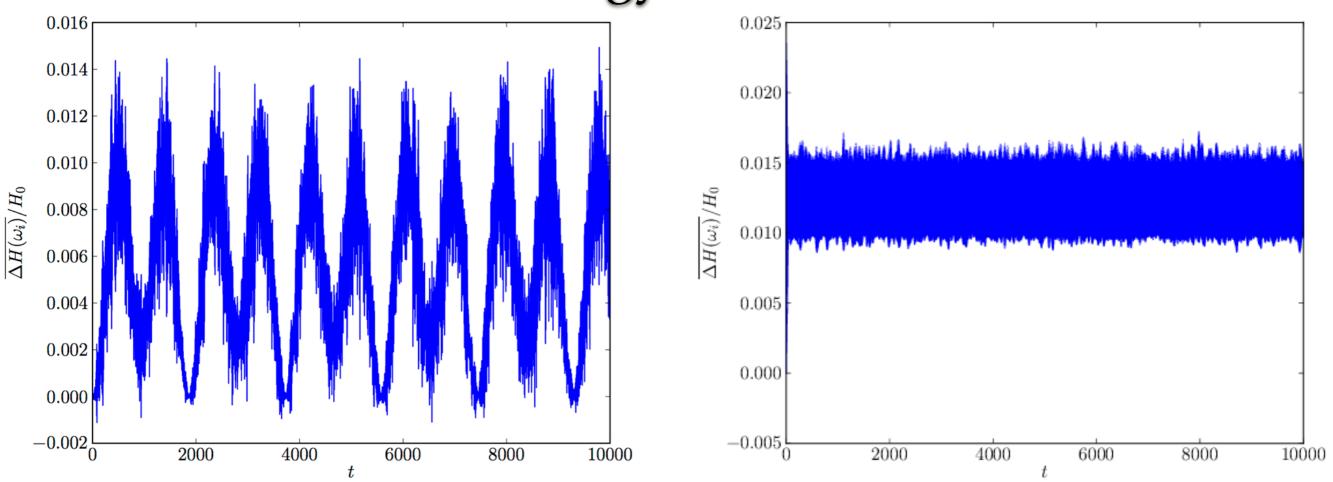


### Not Landau damping

### Not Landau damping



## Nonlinear Decoherence vs.Landau Damping Energy Growth



Nonlinear decoherence

Landau damping



#### **Controlled Nonlinear Lattices can have Bounded Motion**

Normalized coordinates

$$H = \frac{1}{2}\vec{p}^{2} + \vec{q}^{T}\tilde{K}(s) \vec{q} + U(\vec{q}, s)$$

$$z_N = \frac{z}{\sqrt{\beta(s)}}$$
$$p_N = p\sqrt{\beta(s)} - \frac{\beta'(s)z}{2\sqrt{\beta(s)}}$$
$$\psi'(s) = \frac{1}{\beta(s)}$$

canonical transformation



$$\mathcal{H} = \frac{1}{2}\vec{p}_N^2 + \frac{1}{2}\vec{q}_N^2 + \beta(\psi)U\left(\sqrt{\beta_x(\psi)}x_N, \sqrt{\beta_y(\psi)}y_N, s(\psi)\right)$$

Controlled nonlinearity

$$\beta(\psi)U\left(\sqrt{\beta_x(\psi)}x_N,\sqrt{\beta_y(\psi)}y_N,s(\psi)\right) = V\left(x_N,y_N\right)$$

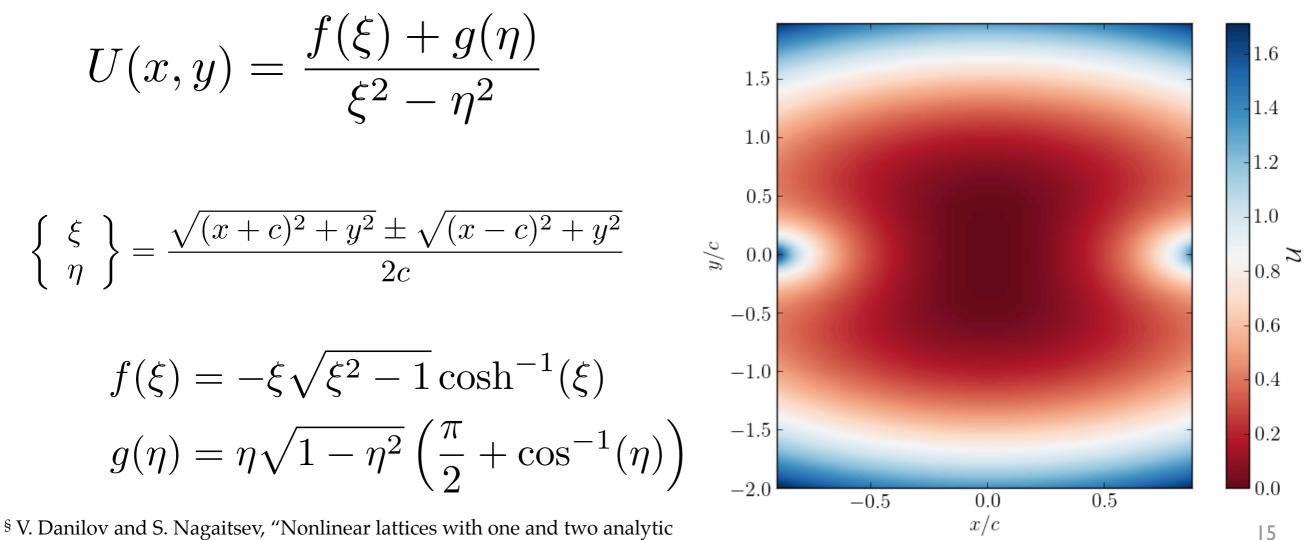
#### Hamiltonian becomes a conserved quantity

#### Nonlinear Integrable Optics<sup>§</sup>

Bertrand-Darboux Eqn.

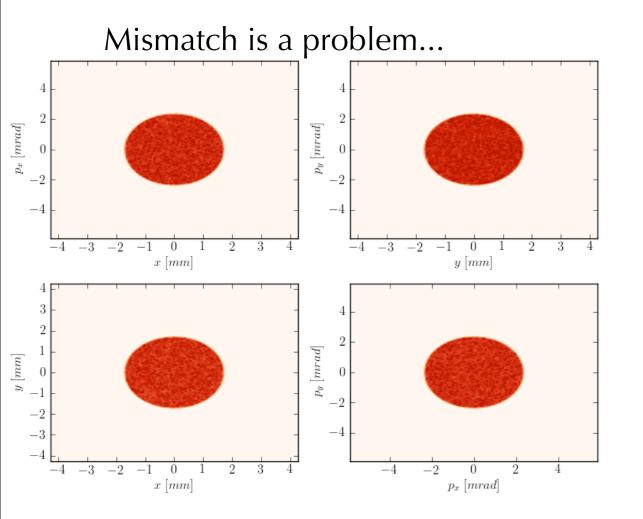
$$xy \left(\partial_{xx}U - \partial_{yy}U\right) + \left(y^2 - x^2 + c^2\right)\partial_{xy}U + 3y \ \partial_x U - 3x \ \partial_y U = 0$$

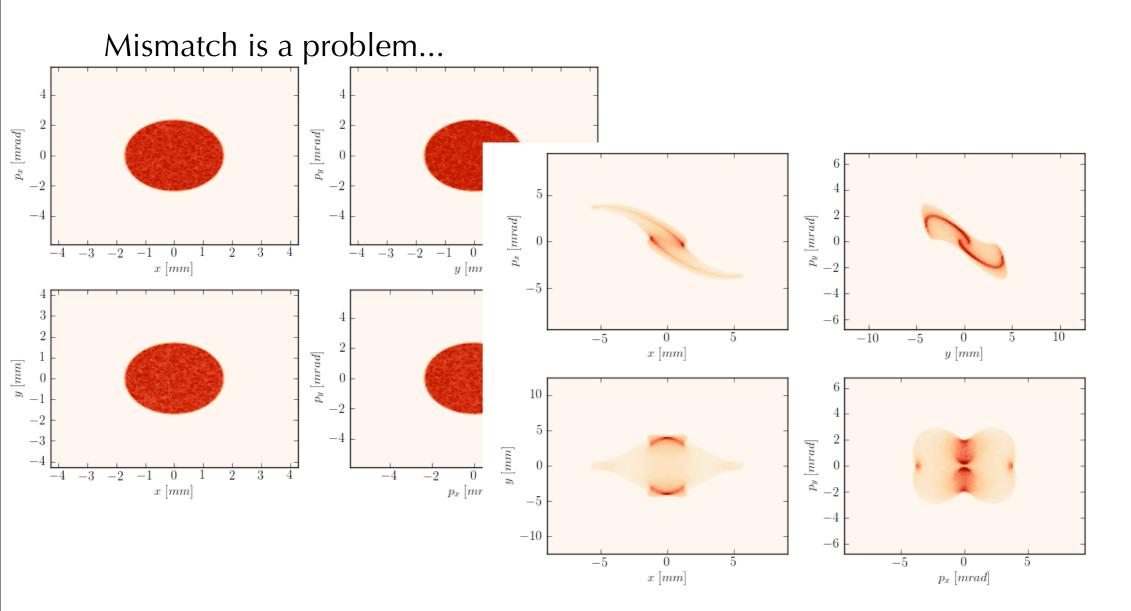
Self-consistently with Maxwell's equations yields...



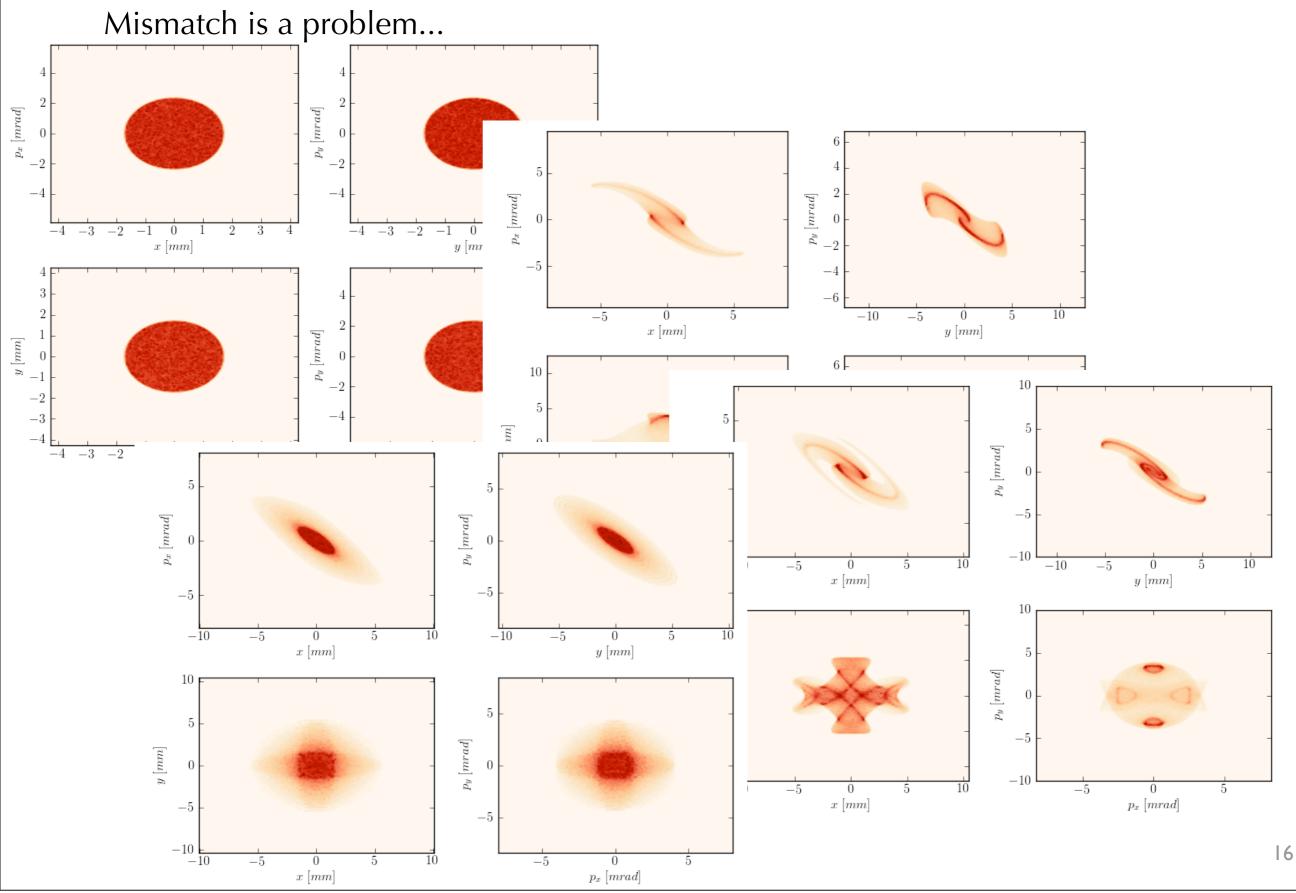
Friday, April 19, 13

invariants", Phys. Rev. ST - Acc. Beams 13, 084002 (2010).









Friday, April 19, 13

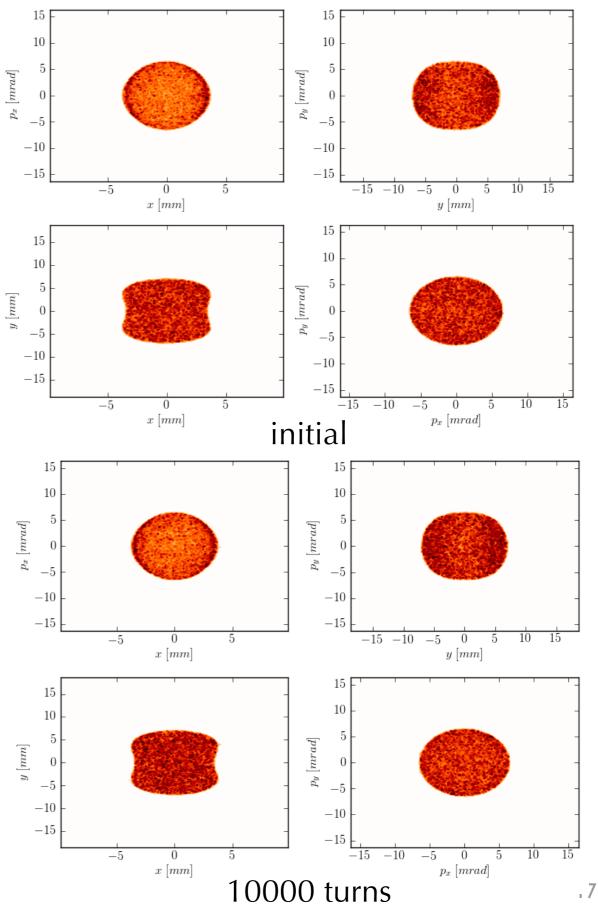
#### **Generalized Matching Creates Stable Beams**

Beam Matching & Fixed Points of the Single Particle Hamiltonian

$$\hat{\mathcal{H}} = \frac{\hat{p}_x^2}{2} + \frac{\hat{p}_y^2}{2} + \frac{\hat{x}^2}{2} + \frac{\hat{y}^2}{2} + U\left(\hat{x}, \hat{y}\right)$$

General KV-type Distribution:

$$f\left(\hat{\mathcal{H}}\right) = \delta\left(\hat{\mathcal{H}} - \epsilon\right)$$
$$F\left(\hat{\mathcal{H}}\right) = \int d\epsilon' F(\epsilon')\delta\left(\hat{\mathcal{H}} - \epsilon'\right)$$





# Halo Formation Mitigation

#### **Beam Halo Overview**

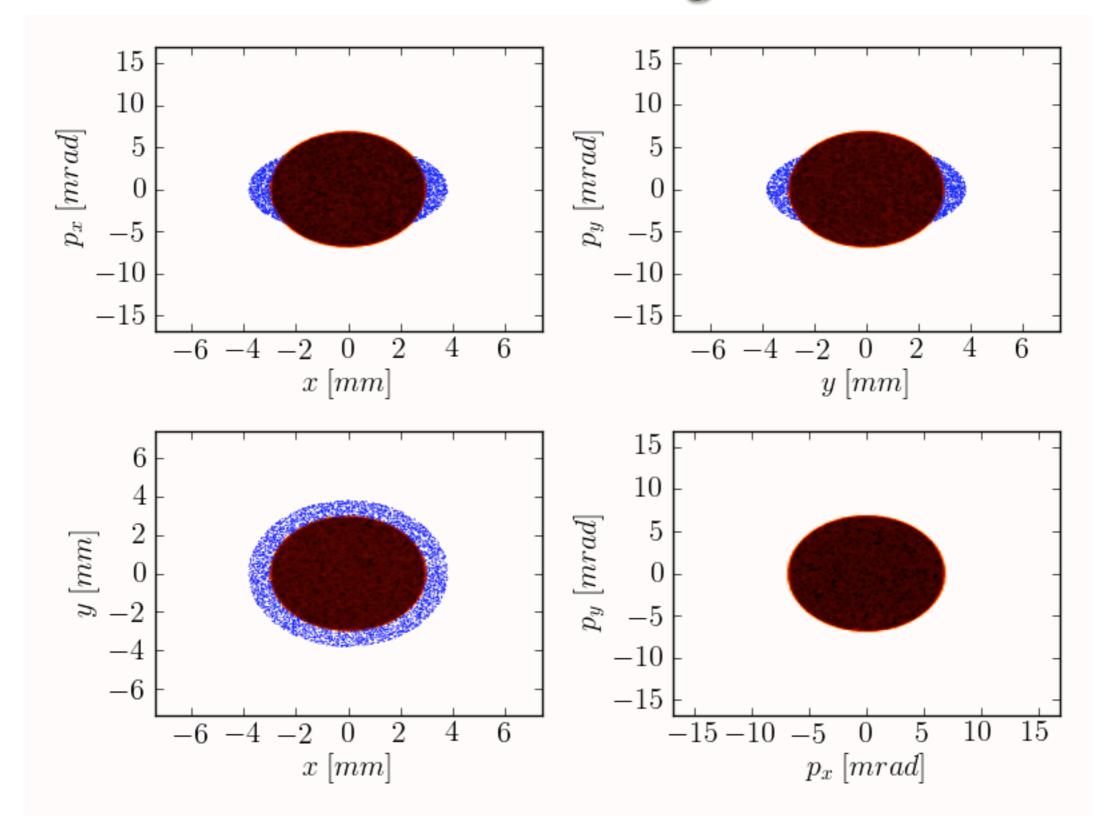
Mismatched KV core "breaths", driving a parameteric space charge driven resonance<sup>§</sup>

$$\tilde{H} = \kappa/qa^2 \left( w\epsilon \cos \Psi - \Delta \ w + \frac{3}{8}w^2 \right)$$

§ R. Gluckstern, "Analytic Model for Halo Formation in High Current Ion Linacs". Phys. Rev. Lett. 73 9 1994

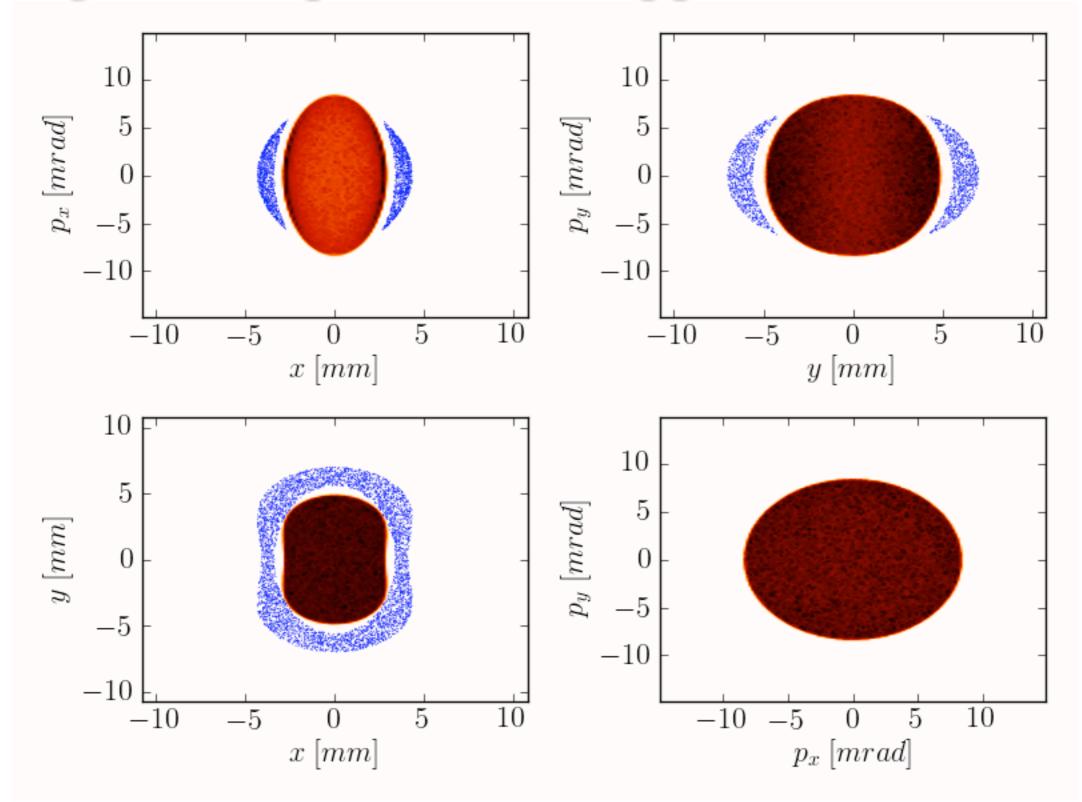
#### Linear Lattice Forming Beam Halo

#### Linear Lattice Forming Beam Halo



#### Integrable Elliptic Lattice Suppresses Beam Halo

### Integrable Elliptic Lattice Suppresses Beam Halo



### Nonlinear Decoherence Prevents Halo Formation

- Beam halo is a major issue for intense beam transport and storage
- Properly matched beams in properly designed nonlinear lattices prevent halo formation
- Questions:
  - The limits of nonlinear decoherence
  - Effects of broken integrability
  - Preserving integrability against collective effects



# Thank you

#### ICFA Mini-workshop on Space Charge April 2013

Tech-X Corp. <sup>+</sup> CIPS, University of Colorado

**FermiLab** 

**Oak Ridge National Lab** 

Stephen D. Webb<sup>+</sup>, David L. Bruhwiler<sup>‡</sup>, Dan T. Abell, Kirill Danilov, John R. Cary<sup>‡</sup>

Sergei Nagaitsev, Alexander Valishev

Viatcheslav Danilov

