
Sandra	  Aumon	  –	  ICFA	  Space	  Charge	  Workshop	  	  2013	  

Status	  of	  Space	  Charge	  Effects	  Studies	  	  	  
during	  Bunch	  Compression	  in	  the	  future	  FAIR	  SIS-‐100	  

	  
	  
	  

Sandra	  Aumon	  –	  GSI	  	  
	  
	  

Acknowledgements	  to	  O.	  Boine	  Frankenheim,	  G.	  FrancheD,	  S.	  Appel,	  R.	  Bruce	  

1	  



Sandra	  Aumon	  –	  ICFA	  Space	  Charge	  Workshop	  	  2013	  

Contents	  

1.  Final	  Bunch	  Compression	  in	  the	  SIS-‐100	  for	  the	  FAIR	  Project	  

2.  Aim	  of	  the	  space	  charge	  studies	  during	  the	  bunch	  rotaKon	  

3.  Longitudinal	  aspects	  of	  the	  SIS-‐100	  bunch	  compression	  

4.  OpKcs	  funcKons	  deformaKon	  due	  to	  space	  charge	  
-‐	  	  Transverse	  envelop	  equaKon:	  Venturini	  equaKons	  
-‐	  	  Constant	  focusing	  example	  
-‐	  	  SIS-‐100	  beam	  envelop	  with	  space	  charge	  

5.  SimulaKons	  with	  PyOrbit:	  outlooks	  

6.  Conclusions,	  Outlooks	  

2	  



Sandra	  Aumon	  –	  ICFA	  Space	  Charge	  Workshop	  	  2013	  

Final	  Bunch	  Compression	  in	  SIS-‐100	  

•  Intense	  short	  ions	  beam	  required	  by	  experiments	  for	  plasma	  physics	  and	  
exoCc	  elements	  producCons	  

•  50ns	  ions	  beams	  aWer	  final	  bunch	  rotaKon.	  Why	  short	  beams	  ?	  
Example:	  

This	  is	  why	  the	  bunch	  
should	  be	  as	  short	  as	  
possible	  

3	  M. Steck, STORI’08, Lanzhou, 14 – 17 September 2008.

Fast Bunch Rotation in CR

Fast bunch rotation of SIS100 bunch 
to provide optimum initial parameters 
for stochastic cooling
total rf voltage 200 kV at h=1 reduces
the momentum spread (2.5o 0.5 %)
after passage of production target 

50 ns

r2.5 %

r0.5 %

r0.75 %

bunch rotation

adiabatic debunching

SIS100 bunch after target

after bunch rotation and 
debunching in CR

bunch rotation cavity
filled with magnetic alloy
(SIS18 bunch compressor)

voltage 40 kV
length 1 m 
frequency range 1.18 – 1.38 MHz
rotation time a

 

100 PsM.	  Steck	  STORI’08	  
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Final	  Bunch	  Compression	  in	  SIS-‐100	  

SIS	  100	  
	  
L=1083.6	  m	  

rf	  compressor	  	  
secKon	  (≈40	  m)	  

Courtesy	  O.Boine	  Frankenheim	  
(HB2008)	  

#caviCes	   Voltage	  [kV]	   	  Frequency	  [MHz]	   Concept	  

AcceleraCon	   20	   400	   1.1-‐2.7	  (h=10)	   Ferrite	  

Compression	   16	   600	  (later	  
1MV)	  

0.4-‐0.5	  (h=2)	   MA	  (low	  duty	  
cycle)	  

RF	  cavity	  systems	  in	  SIS	  100:	  

2-‐4x1013	  

5x1011	  

ParCcles/bunch	   bunch	  length	  

25	  ns	  29	  GeV/u	  p	  

50	  ns	  1.5	  GeV/u	  U28+	  

4	  
M. Steck, STORI’08, Lanzhou, 14 – 17 September 2008.

SIS 100
First full size, fast ramping
s.c. dipole prototype
(JINR Dubna)

Magnetic alloy filled 
rf cavity for bunch compression (SIS18)

5x1011�U28+

SIS 18

SIS�100�

fast ramping 0.7 Hz

circumference 1080 m

MagneKc	  alloy	  	  
RF	  cavity	  for	  bunch	  
compression	  
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Final	  Bunch	  Compression	  in	  SIS-‐100	  
Single	  bunch	  formaKon	  

10	  bunches	  

‘bunch	  merging’	  

pre-‐compression	  

rotaKon	  

extracKon	  	  

50	  ns	  full	  bunch	  length	  aWer	  compression	  required.	  
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Aim	  SC	  studies	  during	  the	  rotaKon	  
•  What	  can	  be	  wrong	  during	  the	  compression	  ?	  

-‐	  Influence	  of	  longitudinal	  space	  charge	  
-‐	  Transverse	  space	  charge	  tune	  shiW	  
-‐	  Resonance	  crossing	  ?	  
-‐	  Effects	  of	  transverse	  space	  charge	  on	  the	  dispersion	  and	  beta	  funcCons.	  

•  Squeleton	  of	  the	  study	  
-‐	  Longitudinal	  studies	  (Need	  the	  simulaKons)	  
-‐	  AnalyKcal	  study	  with	  Venturini	  transverse	  envelop	  equaKons	  
	  	  Apply	  to	  the	  SIS100	  and	  the	  beam	  transfer	  
	  	  Effect	  of	  transverse	  space	  charge	  on	  the	  opKcs	  and	  beam	  spot	  at	  the	  
target	  	  (SKll	  on	  going)	  
	  -‐	  Should	  be	  supported	  by	  simulaKons	  (for	  instance	  with	  PyOrbit,	  3D)	  
	  	  	  	  (preliminary	  convergence	  studies	  on	  going)	  

•  SIS-‐100	  has	  a	  Cny	  loss	  budget	  (See	  Giuliano’s	  talk)	  
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Longitudinal	  envelop	  equaKon	  	  

z
00

m + k2z0zm � Kl

z2m
� ✏2l

z3m
= 0

k2z0 =
eZV h|⌘|

2⇡R2��2Amc2

Kl =
�3gN(Z2/A)rp⌘
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g = 0.5 + 2 log(Rp/Rb)

Ref[1]:	  M.	  Reiser,	  “Theory	  and	  Design	  of	  Charged	  ParKcle	  Beams”.	  
Ref[2]:	  G.	  FrancheD,	  I.	  Hofmann,	  G.	  Rumolo,	  PhysRevSTAB.3.084201	  

RF	  PotenKal	  term	  

Longitudinal	  space	  charge	  term,	  
Coulomb	  energy,	  Perveance	  

✏l = |⌘|zm(�p/p0)0 KineKc	  energy,	  or	  emirance	  term,	  not	  
constant	  with	  energy	  
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Effect of space charge on bunch compression near the transition

G. Franchetti, I. Hofmann, and G. Rumolo
GSI, Darmstadt, Germany

(Received 7 April 2000; published 28 August 2000)
It is shown that energy conservation in the longitudinal envelope equation can be used to derive

analytic expressions to model fast bunch compression and the effect of space charge in terms of a dimen-
sionless Coulomb parameter S !~ 1"h, with h the slip factor). For small jhj (below transition, hence
S ¿ 1), the rf voltage required is nearly independent of h and dominated by space charge repulsion.
The extra voltage generates the coherent momentum spread d ~ 1"

p

jhj required to compensate the
increasing space charge force gradient during compression. This sets a clear limit to the useful approach
to transition. An h jump scheme is discussed to minimize this effect. Particle-in-cell computer simu-
lation confirms the validity of our results also for more realistic beam distributions. Noticeable tails in
momentum space due to the nonlinear space charge force are found for Gaussian line density bunches
and S ¿ 1.

PACS numbers: 29.27.Bd

I. INTRODUCTION
Bunch compression against space charge is an important

issue in applications such as high-power proton drivers
(for neutrons, muon or neutrino facilities, etc.) or high-
intensity heavy ion rings as considered for radioactive
beam facilities or inertial fusion. In the absence of space
charge it may seem attractive (for particles of a few
GeV"u) to lower the stringent rf voltage requirements by
working closer to transition energy. For high-intensity
bunches, and below transition, this requires careful
study since space charge effects become enhanced when
approaching transition energy.
In this work we refer to the scheme of a 90± bunch

rotation by a fast jump of the rf voltage (alternatively, an
h jump at fixed voltage to increase the bucket height),
whereas adiabatic compression is not considered as it may
be impractical due to the high voltage requirement. For a
quantitative analysis it is convenient to use the standard
longitudinal envelope equation. It is a self-consistent
model of a bunch with parabolic current profile and
“square root” distribution in phase space [1] provided that
the bunch is sufficiently long, in terms of the beam pipe
diameter, to yield a linearly rising space charge force.
We note that part of the work presented here (the drift
approximation) follows earlier derivations for jh j#1
in the context of heavy ion fusion compression [2,3].
Following the notation of Ref. [4], and using the distance
s as an independent variable, we have for the envelope zm

z 00m 1 k2
z0zm 2

KL

z2
m

2
e2

L

z3
m

! 0 , (1)

with k2
z0 ! eZVhh"!2pR2gb2Amc2$ the linearized rf

focusing force constant for a voltage V at harmonic h,
the longitudinal perveance KL ! 23gN!Z2"A$rph"
!2b2g3$, the g factor

g ! 0.5 1 2 ln!Rp"Rb $ (2)

(Rp and Rb the pipe and beam radii), N the bunch intensity,
Z the charge of an ion with mass A, and rp # 1.53 3
10218 m. The longitudinal emittance is defined as area
in z, z0 , hence eL ! jhjzm!dp"p0$0, with the slip factor
given by h ! 1"g2

t 2 1"g2. !dp"p0$0 is as shown in
Fig. 1, which becomes the maximummomentum deviation
Dp"p0 for an upright ellipse. It is noted that this emittance
is not an invariant if h changes.
Some caution is required when using this equation near

transition energy. We assume jhj is sufficiently large
that corrections to the momentum compaction factor from
Dp"p or a shift in the betatron tune by space charge can
be ignored (it is shown here that space charge may elimi-
nate the reasons that such small values of jhj should be
considered). An extension of our analysis to include the
case of arbitrarily small jhj or an h spread is left to future
studies.

zm
z

FIG. 1. Definition of parameters for a rotated ellipse in the fast
compression scheme.

1098-4402"00"3(8)"084201(10)$15.00 © 2000 The American Physical Society 084201-1
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Effect	  of	  longitudinal	  space	  charge	  	  
during	  the	  bunch	  compression	  
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FIG. 3. Momentum spread and envelope for case (i),
with h ! 20.1.

(i) h ! 20.1, with Sf ! 1.14, requiring 9.5 MV and
Dmax!Df ! 1.16 "1.22# (see Fig. 3).
(ii)h ! 20.001, withSf ! 114, requiring 4.7MV and

Dmax!Df ! 7.02 "7.04# (see Fig. 4). It is seen that the
reduced voltage is compensated by an increased number
of turns and an unacceptably large coherent spread.
(iii) Using a two-step scheme starting with h ! 20.01

and rotating to Dmax!Df ! 1.2, we require 2.23 MV. Hav-
ing reached the peak of the coherent momentum spread
(turn 25) we complete the rotation (keeping the same volt-
age) at h ! 20.1, which leads to the desired final length.
In Fig. 5 we show the result, along with a 650% varia-
tion about the nominal h. Such a spread may result from
the dependence of gt on the incoherent tune shift or a
combination of this and a dependence on the momentum
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FIG. 4. Momentum spread and envelope for case (ii), with
h ! 20.001.

spread. The resulting final spread in bunch length and
coherent momentum spread still appears tolerable. Sig-
nificantly larger spreads in h certainly need to be stud-
ied self-consistently with a simulation program. We also
show in Fig. 5 the result for a complete compression at
constant h ! 20.01, which requires 5.1 MV and leads to
Dmax!Df ! 2.4.
We notice that a two-step scheme jumping from h !

20.001 to h ! 20.1 would lower the required voltage to
0.95 MV, but the inevitable spread in gt causes a signifi-
cantly larger spread than was the case in example (iii).
We also mention that the approximation in Eqs. (20) and
(21) leads to 1.0 MV in this case; for the case of ex-
ample (iii) the approximation significantly overestimates
the correct value and predicts 3.1 MV, which is 39%
too high.
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spread. The resulting final spread in bunch length and
coherent momentum spread still appears tolerable. Sig-
nificantly larger spreads in h certainly need to be stud-
ied self-consistently with a simulation program. We also
show in Fig. 5 the result for a complete compression at
constant h ! 20.01, which requires 5.1 MV and leads to
Dmax!Df ! 2.4.
We notice that a two-step scheme jumping from h !

20.001 to h ! 20.1 would lower the required voltage to
0.95 MV, but the inevitable spread in gt causes a signifi-
cantly larger spread than was the case in example (iii).
We also mention that the approximation in Eqs. (20) and
(21) leads to 1.0 MV in this case; for the case of ex-
ample (iii) the approximation significantly overestimates
the correct value and predicts 3.1 MV, which is 39%
too high.
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Examples	  from	  G.	  FrancheD,	  I.	  Hofmann,	  G.	  Rumolo,	  PhysRevSTAB.3.084201	  

The	  maximum	  momentum	  spread	  is	  reached	  
before	  the	  end	  of	  the	  compression	  
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Beam	  parameters	  at	  SIS-‐18	  injecKon	  
Beam	  Parameters	  

KineKc	  Energy	  (MeV/u)	   11.4	  

ParKcle	   U	  28+	  

Total	  Energy	  (MeV)	   224	  415	  

beta/gamma	   0.15/1.01	  

Momentum	  CompacKon	  factor	  η	   -‐0.94	  

Harmonic	  number	  h	   2	  

RevoluKon	  number	  (μs)	   4.68	  

9	  

Parabolic	  distribu>on	  in	  momentum	  
Δp/p=1e-‐3	  	  
Courtesy	  S.	  Appel	  
	  
Longitudinal	   bunch	   area	   is	   computed	   from	  
coasKng	  beam	  SIS-‐18	  injecKon	  parameters.	  
	  A = 400.4 eVs
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Beam	  parameters	  before	  the	  final	  bunch	  compression	  in	  
the	  SIS-‐100	  

Beam	  Parameters	  

Radius	  (m)	   172.5	  

Circumference	  (m)	   1083.6	  

ExtracKon	  KineKc	  Energy	  (GeV/u)	   1.5	  

Total	  Energy	  (GeV)	   552.553	  

Beta/gamma	   0.91/2.49	  

Gamma	  transiKon	   15.6	  

Harmonic	  number	  h	   2	  

RevoluKon	  period	  (μs)	   3.95	  

#	  bunches	   1	  (one	  empty	  bucket)	  

Momentum	  CompacKon	  factor	  η	   -‐0.15	  

RMS	  transverse	  emirance	  @	  1.5GeV/u	   H	  3.4,	  V	  1.1	  mm.mrad	  

10	  
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Bunch	  Compression	  in	  SIS-‐100	  
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The	  longitudinal	  space	  charge	  is	  a	  
weak	  effect	  on	  the	  final	  momentum	  
spread	  at	  the	  end	  of	  the	  bunch	  
compression	  
	  
Will	  depend	  on	  the	  g	  factor.	  
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g = 0.5 + 2 ln
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Rp	  Radius	  pipe	  
Rb	  Radius	  beam	  
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Present	  SituaKon	  

•  If	  the	  bunch	  to	  bucket	  transfer	  from	  SIS-‐18	  to	  SIS-‐100	  is	  not	  improved,	  
longitudinal	  diluKon	  by	  factor	  2	  is	  the	  present	  situaKon.	  

•  360	  kV	  available	  for	  compression	  voltage	  day	  1,	  	  
a	  full	  bunch	  length	  of	  75	  ns	  is	  expected	  from	  longitudinal	  envelop	  
equaKon.	  
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Transverse	  Space	  Charge	  Tune	  ShiW	  
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Only	  during	  the	  last	  
turns	  of	  the	  bunch	  
compression	  that	  the	  
tune	  depresses	  a	  lot!	  
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Transverse	  Envelope	  EquaKons	  
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d
dz

kxdl ≠ kpxdl , (6a)

d
dz

kpxdl ≠ 2kxkxdl 2 go

ø
d

≠

≠x
c

¿
1

1
r

kd2l . (6b)

The equations for k y2l, kp2
yl, k ypyl are similar to those

for kx2l, kp2
xl, kxpxl when the dispersive term in the

Hamiltonian is absent. Under the assumption of a beam
with elliptic symmetry one can prove [1] that the terms in
Eqs. (5), (6) involving the self-potential can be derived by
an effective potential of the form

q
my2

z g3 csx, y, zd ≠ 2
K

4ssx 1 syd

µ
x2

sx
1

y2

sy

∂
, (7)

where K is the perveance [4] and sx ≠
p

kx2l and sy ≠p
k y2l. Given a self-potential of the form (7) the resulting
equation for the dispersion function is

D00 1

∑
kxszd 2

K
2sxssx 1 syd

∏
D ≠

1
rszd

. (8)

Use of Eq. (7) to write the equation for the dispersion
function accounts to assuming a linear approximation, with
the linear part of the force due to space charge defined in
an rms sense (as shown in [1]). To the extent that such
an approximation holds, the generalized rms emittance edx

defined in (3) is invariant. One can simplify the expression
for the generalized rms emittance by observing that the
two equations (6) can be combined into a single equation
that has the same form as (8). This allows us to identify
kxdl ≠ kd2lDszd and kpxdl ≠ kd2lDszd0. Consequently,

e2
dx ≠ skx2l 2 D2kd2ld skp2

xl 2 D02kd2ld
2 skxpxl 2 DD0kd2ld2. (9)

Next, we can use edx to express kp2
x l in terms of the

other moments. By doing so, one can rewrite the rms
equations as

s00
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e2
dx 1 ssxs0

x 2 DD0kd2ld2

sxss2
x 2 D2kd2ld

2
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ss0

xd2
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µ
D
r

1 D02
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,

(10)

s00
y ≠

e2
y

s3
y

2 kysy 1
K

2ssx 1 syd
. (11)

The three equations (8),(10),(11), in the variablesD, sx ,
sy , provide a consistent description for the evolution of the
rms envelopes of a beam in a dispersive channel. They
can be used to achieve a simultaneous matching of the rms
beam envelopes and dispersion function. We emphasize
the fact that the invariant eds appearing in Eq. (10) co-
incides with the rms emittance at those locations where
D ≠ 0. Finally, notice that for 1yrszd ≠ 0 or kd2l ≠
0, we recover the usual envelope equations for straight
transport lines.

As an application and a test of the theory outlined in this
paper we now want to estimate the variation of the beam
parameters in the transition from a straight beam line into
a small ring. In the model we consider both the focusing
functions and the radius of curvature in the circular channel
are z independent (smooth approximation). Furthermore,
the external focusing is the same in the straight and in
the circular channel. We assume that the beam undergoes
a transition between two stationary distributions before
and after injection. For the purposes of this calculation
we do not need to specify how this matched injection
can be achieved. In general the solution of the matching
problem would require the solution of the rms envelope-
dispersion differential equations (8),(10),(11) for specified
initial and final beam conditions. The stationary solution
before injection reads

se2
x ds

s3
xs

2 kxsxs 1
K

2ssxs 1 sysd
≠ 0 (12)

(similar equation for sys with sxs and sys interchanged).
The subscript s indicates that the various quantities re-
fer to the beam in the straight channel before injection.
For a given value of the beam perveance K and emit-
tance the equation above can be solved for the rms size of
the beam sxs, sys. After injection in the circular chan-
nel a stationary beam must satisfy the set of equations
(8),(10),(11) with s0

y ≠ s0
x ≠ D0 ≠ 0. The connection

between the two sets of rms quantities is provided by the
assumption that the generalized emittance (3) in the hori-
zontal plane is conserved through injection. Of course,
the vertical rms emittance is also preserved because dis-
persion in our model affects the motion only in the hori-
zontal plane. We have calculated a numerical solution for
this set of equations for various values of the perveance
or beam current for the particular case of an initially round
beam sxs ≠ sys ≠ 0.5 cm. The other parameters are
[10] kx ≠ ky ≠ 17.44 m, r ≠ 1.82 m, corresponding to
an undepressed rms tune of nox ≠ noy ≠ 7.6.

p
kd2l ≠

0.007. For any given value of the perveance, the emit-
tance sexds ≠ seyds is tuned in such a way that different
beams with different perveance have the same rms radius
at injection.
In Fig. 1 we plot the rms horizontal size of the beam

after injection as a function of the tune depression. The
value is scaled with respect to the rms horizontal size
before injection. The tune depression nyno (i.e., the ratio
between the rms tune in the presence of space charge
n, and the tune in the absence of space charge no) is
also calculated with respect to the beam before injection.
We observe that the effect of higher space charge is to
enlarge the beam horizontally. The curve is compared to
results obtained in [8] where the same system was studied
by looking for self-consistent solutions of the Vlasov-
Poisson equations in the form of generalized KV beams
[11] in a recirculator (dots in the picture), with all the
nonlinearity due to space charge taken into account. The
agreement corroborates the validity of the new set of

98

VOLUME 81, NUMBER 1 P HY S I CA L REV I EW LE T T ER S 6 JULY 1998

d
dz

kxdl ≠ kpxdl , (6a)

d
dz

kpxdl ≠ 2kxkxdl 2 go

ø
d

≠

≠x
c

¿
1

1
r

kd2l . (6b)
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Use of Eq. (7) to write the equation for the dispersion
function accounts to assuming a linear approximation, with
the linear part of the force due to space charge defined in
an rms sense (as shown in [1]). To the extent that such
an approximation holds, the generalized rms emittance edx
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The three equations (8),(10),(11), in the variablesD, sx ,
sy , provide a consistent description for the evolution of the
rms envelopes of a beam in a dispersive channel. They
can be used to achieve a simultaneous matching of the rms
beam envelopes and dispersion function. We emphasize
the fact that the invariant eds appearing in Eq. (10) co-
incides with the rms emittance at those locations where
D ≠ 0. Finally, notice that for 1yrszd ≠ 0 or kd2l ≠
0, we recover the usual envelope equations for straight
transport lines.

As an application and a test of the theory outlined in this
paper we now want to estimate the variation of the beam
parameters in the transition from a straight beam line into
a small ring. In the model we consider both the focusing
functions and the radius of curvature in the circular channel
are z independent (smooth approximation). Furthermore,
the external focusing is the same in the straight and in
the circular channel. We assume that the beam undergoes
a transition between two stationary distributions before
and after injection. For the purposes of this calculation
we do not need to specify how this matched injection
can be achieved. In general the solution of the matching
problem would require the solution of the rms envelope-
dispersion differential equations (8),(10),(11) for specified
initial and final beam conditions. The stationary solution
before injection reads

se2
x ds

s3
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2 kxsxs 1
K

2ssxs 1 sysd
≠ 0 (12)

(similar equation for sys with sxs and sys interchanged).
The subscript s indicates that the various quantities re-
fer to the beam in the straight channel before injection.
For a given value of the beam perveance K and emit-
tance the equation above can be solved for the rms size of
the beam sxs, sys. After injection in the circular chan-
nel a stationary beam must satisfy the set of equations
(8),(10),(11) with s0

y ≠ s0
x ≠ D0 ≠ 0. The connection

between the two sets of rms quantities is provided by the
assumption that the generalized emittance (3) in the hori-
zontal plane is conserved through injection. Of course,
the vertical rms emittance is also preserved because dis-
persion in our model affects the motion only in the hori-
zontal plane. We have calculated a numerical solution for
this set of equations for various values of the perveance
or beam current for the particular case of an initially round
beam sxs ≠ sys ≠ 0.5 cm. The other parameters are
[10] kx ≠ ky ≠ 17.44 m, r ≠ 1.82 m, corresponding to
an undepressed rms tune of nox ≠ noy ≠ 7.6.

p
kd2l ≠

0.007. For any given value of the perveance, the emit-
tance sexds ≠ seyds is tuned in such a way that different
beams with different perveance have the same rms radius
at injection.
In Fig. 1 we plot the rms horizontal size of the beam

after injection as a function of the tune depression. The
value is scaled with respect to the rms horizontal size
before injection. The tune depression nyno (i.e., the ratio
between the rms tune in the presence of space charge
n, and the tune in the absence of space charge no) is
also calculated with respect to the beam before injection.
We observe that the effect of higher space charge is to
enlarge the beam horizontally. The curve is compared to
results obtained in [8] where the same system was studied
by looking for self-consistent solutions of the Vlasov-
Poisson equations in the form of generalized KV beams
[11] in a recirculator (dots in the picture), with all the
nonlinearity due to space charge taken into account. The
agreement corroborates the validity of the new set of
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we obtain 

63 

1 
(2.135) 

(2.136) 

Multiplying Eq. (2.135) by 6, and identifying a = w,&, we obtain the KV 
envelope equation, or simply the KV equation: 

(2.137) 

(2.138) 

Solving the KV envelope equation is equivalent to finding the betatron amplitude 
function in the presence of the space-charge force. The usefulness of the KV equation 
has been further extended to arbitrary ellipsoid distribution functions provided that 
the envelope functions a and b are equal to twice the rms envelope radii, and the 
emittances E, and cz are equal to four times the rms emittances.ls 

If the external force is periodic, i.e. Kx(s) = Kx(s + L ) ,  the KV equation can be 
solved by imposing the periodic boundary (closed orbit) condition (Floquet theorem) 

(2.139) 

A numerical integrator or differential equation solvers can be used to find the envelope 
function of the space-charge dominated beams. The matched beam envelope solution 
can be obtained by a proper closed orbit condition of Eq. (2.139). 

For beams with an initial mismatched envelope, the envelope equation can be 
solved by using the initial value problem to find the behavior of the mismatched 
beams. For space-charge dominated beams, the envelope solution can vary widely 
depending on the external focusing function, the space-charge parameter, and the 
beam emittance. To understand the physics of the mismatched envelope, it is ad- 
vantageous to extend the envelope equation to Hamiltonian dynamics as discussed 
below. 

a(.) = a(s  + L) ,  b(s) = b f s  + L ) .  

C. Hamiltonian formalism of the envelope equation 

Introducing the pseudo-envelope momenta as 

= a', p b  = b', (2.140) 

'*P.M. Lapostolle, ZEEE Runs. Nucl. Sci. NS-18, 1101 (1971); F.J. Sacherer, ibid. 1105 (1971); 
J.D. Lawson, P.M. Lapostolle, and R.L. GIuckstern, Part. Accel. 5 ,  61 (1973); E.P. Lee and R.K. 
Cooper, ibid. 7, 83 (1976). 

Transverse	  envelop	  model	  (see	  Reiser	  book)	  

a:	  hor.	  Beam	  size	  	  
b:	  vert.	  Beam	  size	  	  

Transverse	  envelop	  model	  Venturini	  et	  
al.PhysRevLerer,	  Volume	  81,	  number	  1	  
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the smooth approximation. The main purpose is to offer
a test of the new equations against a self-consistent calcu-
lation as presented in [8]. The results from this particular
example also show that for a tune depression smaller than
0.5 the new equations provide predictions that deviate from
the ones obtained from the usual rms envelope equations.
Consider beam of charged particles of massm in a trans-

port line with local radius of curvature rszd, subject to a
linear focusing (no space-charge forces for the moment)
on the horizontal plane and having a longitudinal momen-
tum pz ≠ pos1 1 dd with a relative deviation d from the
design momentum po , with Eo being the corresponding
energy. We assume that there is no longitudinal focusing.
Such a system is described by the Hamiltonian

H ≠
1
2

p2
x 1

kxszd
2

x2 1
m2c4

E2
o

d2 2
x

rszd
d . (1)

One can easily verify that because of the coupling term
dxyr the standard rms emittance e2

x ≠ skx2l kp2
x l 2

kxpxl2d, is not an invariant for the system (1). Here k?l
denotes the averaging over the phase space variables.
Our problem is to find a new quantity similar to the rms
emittance that is preserved in the presence of dispersion.
The strategy is to write a canonical transformation that
removes the coupling and casts the Hamiltonian in a form
for which the invariant can be immediately written. The
invariant in the original variables is then recovered by
reversion of the canonical transformation.
A suitable canonical transformation is generated by

G2sx, px , zd ≠ pxfx 2 dDszdg 1 xdD0szd, where Dszd is
a function that will eventually be identified with the dis-
persion function: x ≠ x 2 dDszd and px ≠ px 1 dD0szd.
The transformed Hamiltonian reads

H ≠
1
2

p2
x 1

kx

2
x2 1

m2c4

E2
o

d2

1 dx

µ
D00 1 kxD 2

1
r

∂
1 . . . .

The remaining terms (. . .) in the Hamiltonian contain a
combination of d and functions of z. Since they affect
only the evolution of the variable canonically conjugated
to d (i.e., the RF phase), which we are not interested
in, they can be disregarded. Clearly, if the function D
is chosen in such a way that D00 1 kxszdD 2 1yrszd ≠
0, the coupling between d and x vanishes and we can
immediately conclude that the quantity e2

x ≠ skx2l kp2
xl 2

kxpxl2d is a linear invariant for the Hamiltonian H. Then,
if we express ex in terms of the old variables we obtain a
quantity invariant for our original system. We have

kx2l ≠
Z

x2fsx, px , dd dm

≠
Z

sx 2 dDd2fsxsx, px , dd,pxsx, px , dd, dd dm

≠ kx2l 2 2Dkxdl 1 D2kd2l . (2)

Here, dm ≠ dx dpx dd, dm ≠ dx dpx dd, and dm ≠
dm because the transformation is canonical. Notice that
since fsx, px , dd is a generic function, then f̃sx, px , dd ≠
ffxsx, px , dd,pxsx, px , dd, dg is also a generic function.
That is, the equality (2) holds for any distribution func-
tion. By the same token one can evaluate kp2

xl and kxpxl
in terms of the moments in the old variables, and finally
write the new invariant as

e2
x ≠ e2

dx ≠ skx2l 2 2Dkxdl 1 D2kd2ld
3 skp2

x l 2 2D0kpxdl 1 D02kd2ld
2 skxpxl 2 Dkpxdl 2 D0kxdl 1 DD0kd2ld2. (3)

We have introduced the notation edx for the new invari-
ant, to which in the following we will refer as “gener-
alized emittance.” Notice that in a straight beam line,
where no dispersion is present (D ≠ D0 ≠ 0) or for a
monochromatic beam with vanishing longitudinal mo-
mentum spread (kd2l ≠ 0), the quantity (3) coincides with
the usual rms emittance. Incidentally, we notice that the
invariant introduced here is different from the generalized
emittances defined, e.g., in [9]. Those quantities are ex-
amples of “kinematic invariants” the invariance of which
is preserved under any linear symplectic map. The quan-
tity defined here is more similar to a “dynamic invariant”
(see [9] for this terminology), the form of which depends
on the details of the physical system through the disper-
sion function Dszd.
Let us now introduce the space-charge forces into the

picture. The Hamiltonian describing a continuous beam
with space charge and in the presence of dispersion reads
(q is the charge, yz the longitudinal velocity, g the
relativistic factor)

H ≠
1
2

sp2
x 1 p2

y d 1
kxszd

2
x2 1

kyszd
2

y2

1
q

my2
z g3 csx, y, zd 2

d

rszd
x 1

m2c4

E2
o

d2. (4)

The self-force is described by the potential c , and includes
the contribution from both the magnetic and electric field
(see, e.g., [4]). In writing (4) we assumed that the nonlin-
earities due to the external focusing and the transverse cur-
rent due to the bending of the beam are negligible. From
the Vlasov equation associated with the Hamiltonian (4)
one can derive the following equations for the second mo-
ments (go ≠ qymy2

z g3):
d
dz

kx2l ≠ 2kxpxl , (5a)

d
dz

kp2
xl ≠ 22kxkxpxl 2 2go

ø
px

≠

≠x
c

¿
1

2
r

kpxdl ,

(5b)

d
dz

kxpxl ≠ kp2
xl 2 kxkx2l 2 go

ø
x

≠

≠x
c

¿
1

1
r

kxdl ,

(5c)
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the smooth approximation. The main purpose is to offer
a test of the new equations against a self-consistent calcu-
lation as presented in [8]. The results from this particular
example also show that for a tune depression smaller than
0.5 the new equations provide predictions that deviate from
the ones obtained from the usual rms envelope equations.
Consider beam of charged particles of massm in a trans-

port line with local radius of curvature rszd, subject to a
linear focusing (no space-charge forces for the moment)
on the horizontal plane and having a longitudinal momen-
tum pz ≠ pos1 1 dd with a relative deviation d from the
design momentum po , with Eo being the corresponding
energy. We assume that there is no longitudinal focusing.
Such a system is described by the Hamiltonian

H ≠
1
2
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x 1
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m2c4
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d2 2
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d . (1)

One can easily verify that because of the coupling term
dxyr the standard rms emittance e2

x ≠ skx2l kp2
x l 2

kxpxl2d, is not an invariant for the system (1). Here k?l
denotes the averaging over the phase space variables.
Our problem is to find a new quantity similar to the rms
emittance that is preserved in the presence of dispersion.
The strategy is to write a canonical transformation that
removes the coupling and casts the Hamiltonian in a form
for which the invariant can be immediately written. The
invariant in the original variables is then recovered by
reversion of the canonical transformation.
A suitable canonical transformation is generated by

G2sx, px , zd ≠ pxfx 2 dDszdg 1 xdD0szd, where Dszd is
a function that will eventually be identified with the dis-
persion function: x ≠ x 2 dDszd and px ≠ px 1 dD0szd.
The transformed Hamiltonian reads
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The remaining terms (. . .) in the Hamiltonian contain a
combination of d and functions of z. Since they affect
only the evolution of the variable canonically conjugated
to d (i.e., the RF phase), which we are not interested
in, they can be disregarded. Clearly, if the function D
is chosen in such a way that D00 1 kxszdD 2 1yrszd ≠
0, the coupling between d and x vanishes and we can
immediately conclude that the quantity e2

x ≠ skx2l kp2
xl 2

kxpxl2d is a linear invariant for the Hamiltonian H. Then,
if we express ex in terms of the old variables we obtain a
quantity invariant for our original system. We have

kx2l ≠
Z

x2fsx, px , dd dm

≠
Z

sx 2 dDd2fsxsx, px , dd,pxsx, px , dd, dd dm

≠ kx2l 2 2Dkxdl 1 D2kd2l . (2)

Here, dm ≠ dx dpx dd, dm ≠ dx dpx dd, and dm ≠
dm because the transformation is canonical. Notice that
since fsx, px , dd is a generic function, then f̃sx, px , dd ≠
ffxsx, px , dd,pxsx, px , dd, dg is also a generic function.
That is, the equality (2) holds for any distribution func-
tion. By the same token one can evaluate kp2

xl and kxpxl
in terms of the moments in the old variables, and finally
write the new invariant as

e2
x ≠ e2

dx ≠ skx2l 2 2Dkxdl 1 D2kd2ld
3 skp2

x l 2 2D0kpxdl 1 D02kd2ld
2 skxpxl 2 Dkpxdl 2 D0kxdl 1 DD0kd2ld2. (3)

We have introduced the notation edx for the new invari-
ant, to which in the following we will refer as “gener-
alized emittance.” Notice that in a straight beam line,
where no dispersion is present (D ≠ D0 ≠ 0) or for a
monochromatic beam with vanishing longitudinal mo-
mentum spread (kd2l ≠ 0), the quantity (3) coincides with
the usual rms emittance. Incidentally, we notice that the
invariant introduced here is different from the generalized
emittances defined, e.g., in [9]. Those quantities are ex-
amples of “kinematic invariants” the invariance of which
is preserved under any linear symplectic map. The quan-
tity defined here is more similar to a “dynamic invariant”
(see [9] for this terminology), the form of which depends
on the details of the physical system through the disper-
sion function Dszd.
Let us now introduce the space-charge forces into the

picture. The Hamiltonian describing a continuous beam
with space charge and in the presence of dispersion reads
(q is the charge, yz the longitudinal velocity, g the
relativistic factor)

H ≠
1
2
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x2 1
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The self-force is described by the potential c , and includes
the contribution from both the magnetic and electric field
(see, e.g., [4]). In writing (4) we assumed that the nonlin-
earities due to the external focusing and the transverse cur-
rent due to the bending of the beam are negligible. From
the Vlasov equation associated with the Hamiltonian (4)
one can derive the following equations for the second mo-
ments (go ≠ qymy2

z g3):
d
dz

kx2l ≠ 2kxpxl , (5a)
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the smooth approximation. The main purpose is to offer
a test of the new equations against a self-consistent calcu-
lation as presented in [8]. The results from this particular
example also show that for a tune depression smaller than
0.5 the new equations provide predictions that deviate from
the ones obtained from the usual rms envelope equations.
Consider beam of charged particles of massm in a trans-

port line with local radius of curvature rszd, subject to a
linear focusing (no space-charge forces for the moment)
on the horizontal plane and having a longitudinal momen-
tum pz ≠ pos1 1 dd with a relative deviation d from the
design momentum po , with Eo being the corresponding
energy. We assume that there is no longitudinal focusing.
Such a system is described by the Hamiltonian

H ≠
1
2

p2
x 1

kxszd
2

x2 1
m2c4

E2
o

d2 2
x

rszd
d . (1)

One can easily verify that because of the coupling term
dxyr the standard rms emittance e2

x ≠ skx2l kp2
x l 2

kxpxl2d, is not an invariant for the system (1). Here k?l
denotes the averaging over the phase space variables.
Our problem is to find a new quantity similar to the rms
emittance that is preserved in the presence of dispersion.
The strategy is to write a canonical transformation that
removes the coupling and casts the Hamiltonian in a form
for which the invariant can be immediately written. The
invariant in the original variables is then recovered by
reversion of the canonical transformation.
A suitable canonical transformation is generated by

G2sx, px , zd ≠ pxfx 2 dDszdg 1 xdD0szd, where Dszd is
a function that will eventually be identified with the dis-
persion function: x ≠ x 2 dDszd and px ≠ px 1 dD0szd.
The transformed Hamiltonian reads

H ≠
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The remaining terms (. . .) in the Hamiltonian contain a
combination of d and functions of z. Since they affect
only the evolution of the variable canonically conjugated
to d (i.e., the RF phase), which we are not interested
in, they can be disregarded. Clearly, if the function D
is chosen in such a way that D00 1 kxszdD 2 1yrszd ≠
0, the coupling between d and x vanishes and we can
immediately conclude that the quantity e2

x ≠ skx2l kp2
xl 2

kxpxl2d is a linear invariant for the Hamiltonian H. Then,
if we express ex in terms of the old variables we obtain a
quantity invariant for our original system. We have

kx2l ≠
Z

x2fsx, px , dd dm

≠
Z

sx 2 dDd2fsxsx, px , dd,pxsx, px , dd, dd dm

≠ kx2l 2 2Dkxdl 1 D2kd2l . (2)

Here, dm ≠ dx dpx dd, dm ≠ dx dpx dd, and dm ≠
dm because the transformation is canonical. Notice that
since fsx, px , dd is a generic function, then f̃sx, px , dd ≠
ffxsx, px , dd,pxsx, px , dd, dg is also a generic function.
That is, the equality (2) holds for any distribution func-
tion. By the same token one can evaluate kp2

xl and kxpxl
in terms of the moments in the old variables, and finally
write the new invariant as

e2
x ≠ e2

dx ≠ skx2l 2 2Dkxdl 1 D2kd2ld
3 skp2

x l 2 2D0kpxdl 1 D02kd2ld
2 skxpxl 2 Dkpxdl 2 D0kxdl 1 DD0kd2ld2. (3)

We have introduced the notation edx for the new invari-
ant, to which in the following we will refer as “gener-
alized emittance.” Notice that in a straight beam line,
where no dispersion is present (D ≠ D0 ≠ 0) or for a
monochromatic beam with vanishing longitudinal mo-
mentum spread (kd2l ≠ 0), the quantity (3) coincides with
the usual rms emittance. Incidentally, we notice that the
invariant introduced here is different from the generalized
emittances defined, e.g., in [9]. Those quantities are ex-
amples of “kinematic invariants” the invariance of which
is preserved under any linear symplectic map. The quan-
tity defined here is more similar to a “dynamic invariant”
(see [9] for this terminology), the form of which depends
on the details of the physical system through the disper-
sion function Dszd.
Let us now introduce the space-charge forces into the

picture. The Hamiltonian describing a continuous beam
with space charge and in the presence of dispersion reads
(q is the charge, yz the longitudinal velocity, g the
relativistic factor)

H ≠
1
2

sp2
x 1 p2

y d 1
kxszd

2
x2 1

kyszd
2

y2

1
q

my2
z g3 csx, y, zd 2

d

rszd
x 1

m2c4

E2
o

d2. (4)

The self-force is described by the potential c , and includes
the contribution from both the magnetic and electric field
(see, e.g., [4]). In writing (4) we assumed that the nonlin-
earities due to the external focusing and the transverse cur-
rent due to the bending of the beam are negligible. From
the Vlasov equation associated with the Hamiltonian (4)
one can derive the following equations for the second mo-
ments (go ≠ qymy2

z g3):
d
dz

kx2l ≠ 2kxpxl , (5a)

d
dz

kp2
xl ≠ 22kxkxpxl 2 2go

ø
px

≠

≠x
c

¿
1

2
r

kpxdl ,

(5b)

d
dz

kxpxl ≠ kp2
xl 2 kxkx2l 2 go

ø
x

≠

≠x
c

¿
1

1
r

kxdl ,

(5c)
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Sandra	  Aumon	  –	  ICFA	  Space	  Charge	  Workshop	  	  2013	  

Constant	  focusing	  case	  

Circumference	  L	   1083.6	  m	  

Radius	  R	   172.6	  m	  

Transverse	  tune	  Q	   18.8	  

Lorentz	  factor	  β/Υ	   0.92/2.60	  

Bρ	   63	  T.m	  

Bending	  radius	  ρ	   31.68	  m	  

Smooth	  k	   0.01188	  m-‐2	  

Smooth	  β	  funcKon	   9.17	  m	  

Smooth	  dispersion	  D	   2.66	  m	  

Transverse	  RMS	  ε	   H	  3.4,	  V	  1.1	  
mm.mrad	  

Final	  bunch	  length	   50	  ns	  (full)	  

< k >=

✓
2⇡Q

L

◆2

< � >=
R

Q

D00 + kD = ⇢ D =
⇢

< k >

Strength	  smooth	  focusing	  approximaKon	  

Beta	  funcKon	  smooth	  focusing	  approximaKon	  

Dispersion	  smooth	  focusing	  approximaKon	  
No	  space	  charge	  

Supposing	  no	  longitudinal	  diluKon	  between	  
SIS18	  and	  SIS100	  –	  very	  opCmisCc	  

With	  D’’=0	  
Matched	  beam	  
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Constant	  focusing	  case	  

•  StaKonary	  soluKons	  for	  constant	  focusing	  	  D’’	  =	  σx’’	  =	  σy’’	  =σx’	  =	  σy’	  =	  D’	  =	  0	  
(matched	  beam)	  

D

✓
< k > � K

sc

�
x

(�
x

+ �
y

)

◆
=

1

⇢

✏2
dx

�
x

(�2
x

� (D�)2)
� < k > �

x

+
K

sc

2(�
x

+ �
y

)
+

�2

�
x

✓
D

⇢

◆
= 0

✏2
y

�3
y

� < k > �
y

+
K

sc

2(�
x

+ �
y

)
= 0 Simple	  (!)	  system	  of	  equaKons	  

to	  solve	  
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Sandra	  Aumon	  –	  ICFA	  Space	  Charge	  Workshop	  	  2013	  

Constant	  focusing	  case	  
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Sandra	  Aumon	  –	  ICFA	  Space	  Charge	  Workshop	  	  2013	  

Constant	  focusing	  case	  
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Tune depression dQv
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êbsm
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D
êD0
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Tune depression dQh

bx
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oo
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Moderate	  effect	  
In	  constant	  focusing	  
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Sandra	  Aumon	  –	  ICFA	  Space	  Charge	  Workshop	  	  2013	  

Transverse	  EquaKons	  in	  SIS-‐100	  

•  SIS-‐100:	  6	  sectors	  of	  ~	  180	  m	  
•  Dispersion	  suppression	  
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Sandra	  Aumon	  –	  ICFA	  Space	  Charge	  Workshop	  	  2013	  

Transverse	  EquaKons	  in	  SIS-‐100	  

•  Read	  a	  Madx	  file	  with	  :	  
s	  locaCon,	  Kxy	  (strenght	  of	  quad),	  l	  (length	  of	  each	  element),	  	  
bending	  angle	  
	  

•  IntegraKon	  of	  the	  equaKons	  element	  by	  element.	  
•  Method	  used	  for	  integraKon	  Runge-‐Kuca	  with	  a	  maximum	  step	  size	  

integraKon	  1mm	  
•  Small	  envelop	  tracking	  	  

w/wo	  space	  charge.	  

•  Any	  other	  suggesKon	  for	  other	  	  
integrator	  ?	  

•  This	  is	  not	  final,	  because	  extracKon	  
line	  is	  going	  up	  !	  VerCcal	  dispersion!	  
Will	  be	  add	  later.	  
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d
dz

kxdl ≠ kpxdl , (6a)

d
dz

kpxdl ≠ 2kxkxdl 2 go

ø
d

≠

≠x
c

¿
1

1
r

kd2l . (6b)

The equations for k y2l, kp2
yl, k ypyl are similar to those

for kx2l, kp2
xl, kxpxl when the dispersive term in the

Hamiltonian is absent. Under the assumption of a beam
with elliptic symmetry one can prove [1] that the terms in
Eqs. (5), (6) involving the self-potential can be derived by
an effective potential of the form

q
my2

z g3 csx, y, zd ≠ 2
K

4ssx 1 syd

µ
x2

sx
1

y2

sy

∂
, (7)

where K is the perveance [4] and sx ≠
p

kx2l and sy ≠p
k y2l. Given a self-potential of the form (7) the resulting
equation for the dispersion function is

D00 1

∑
kxszd 2

K
2sxssx 1 syd

∏
D ≠

1
rszd

. (8)

Use of Eq. (7) to write the equation for the dispersion
function accounts to assuming a linear approximation, with
the linear part of the force due to space charge defined in
an rms sense (as shown in [1]). To the extent that such
an approximation holds, the generalized rms emittance edx

defined in (3) is invariant. One can simplify the expression
for the generalized rms emittance by observing that the
two equations (6) can be combined into a single equation
that has the same form as (8). This allows us to identify
kxdl ≠ kd2lDszd and kpxdl ≠ kd2lDszd0. Consequently,

e2
dx ≠ skx2l 2 D2kd2ld skp2

xl 2 D02kd2ld
2 skxpxl 2 DD0kd2ld2. (9)

Next, we can use edx to express kp2
x l in terms of the

other moments. By doing so, one can rewrite the rms
equations as

s00
x ≠

e2
dx 1 ssxs0

x 2 DD0kd2ld2

sxss2
x 2 D2kd2ld

2
1

sx
ss0

xd2

2 kxsx 1
K

2ssx 1 syd
1

kd2l
sx

µ
D
r

1 D02
∂

,

(10)

s00
y ≠

e2
y

s3
y

2 kysy 1
K

2ssx 1 syd
. (11)

The three equations (8),(10),(11), in the variablesD, sx ,
sy , provide a consistent description for the evolution of the
rms envelopes of a beam in a dispersive channel. They
can be used to achieve a simultaneous matching of the rms
beam envelopes and dispersion function. We emphasize
the fact that the invariant eds appearing in Eq. (10) co-
incides with the rms emittance at those locations where
D ≠ 0. Finally, notice that for 1yrszd ≠ 0 or kd2l ≠
0, we recover the usual envelope equations for straight
transport lines.

As an application and a test of the theory outlined in this
paper we now want to estimate the variation of the beam
parameters in the transition from a straight beam line into
a small ring. In the model we consider both the focusing
functions and the radius of curvature in the circular channel
are z independent (smooth approximation). Furthermore,
the external focusing is the same in the straight and in
the circular channel. We assume that the beam undergoes
a transition between two stationary distributions before
and after injection. For the purposes of this calculation
we do not need to specify how this matched injection
can be achieved. In general the solution of the matching
problem would require the solution of the rms envelope-
dispersion differential equations (8),(10),(11) for specified
initial and final beam conditions. The stationary solution
before injection reads

se2
x ds

s3
xs

2 kxsxs 1
K

2ssxs 1 sysd
≠ 0 (12)

(similar equation for sys with sxs and sys interchanged).
The subscript s indicates that the various quantities re-
fer to the beam in the straight channel before injection.
For a given value of the beam perveance K and emit-
tance the equation above can be solved for the rms size of
the beam sxs, sys. After injection in the circular chan-
nel a stationary beam must satisfy the set of equations
(8),(10),(11) with s0

y ≠ s0
x ≠ D0 ≠ 0. The connection

between the two sets of rms quantities is provided by the
assumption that the generalized emittance (3) in the hori-
zontal plane is conserved through injection. Of course,
the vertical rms emittance is also preserved because dis-
persion in our model affects the motion only in the hori-
zontal plane. We have calculated a numerical solution for
this set of equations for various values of the perveance
or beam current for the particular case of an initially round
beam sxs ≠ sys ≠ 0.5 cm. The other parameters are
[10] kx ≠ ky ≠ 17.44 m, r ≠ 1.82 m, corresponding to
an undepressed rms tune of nox ≠ noy ≠ 7.6.

p
kd2l ≠

0.007. For any given value of the perveance, the emit-
tance sexds ≠ seyds is tuned in such a way that different
beams with different perveance have the same rms radius
at injection.
In Fig. 1 we plot the rms horizontal size of the beam

after injection as a function of the tune depression. The
value is scaled with respect to the rms horizontal size
before injection. The tune depression nyno (i.e., the ratio
between the rms tune in the presence of space charge
n, and the tune in the absence of space charge no) is
also calculated with respect to the beam before injection.
We observe that the effect of higher space charge is to
enlarge the beam horizontally. The curve is compared to
results obtained in [8] where the same system was studied
by looking for self-consistent solutions of the Vlasov-
Poisson equations in the form of generalized KV beams
[11] in a recirculator (dots in the picture), with all the
nonlinearity due to space charge taken into account. The
agreement corroborates the validity of the new set of
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d
dz

kxdl ≠ kpxdl , (6a)

d
dz

kpxdl ≠ 2kxkxdl 2 go

ø
d

≠

≠x
c

¿
1

1
r

kd2l . (6b)

The equations for k y2l, kp2
yl, k ypyl are similar to those

for kx2l, kp2
xl, kxpxl when the dispersive term in the

Hamiltonian is absent. Under the assumption of a beam
with elliptic symmetry one can prove [1] that the terms in
Eqs. (5), (6) involving the self-potential can be derived by
an effective potential of the form

q
my2

z g3 csx, y, zd ≠ 2
K

4ssx 1 syd

µ
x2

sx
1

y2

sy

∂
, (7)

where K is the perveance [4] and sx ≠
p

kx2l and sy ≠p
k y2l. Given a self-potential of the form (7) the resulting
equation for the dispersion function is

D00 1

∑
kxszd 2

K
2sxssx 1 syd

∏
D ≠

1
rszd

. (8)

Use of Eq. (7) to write the equation for the dispersion
function accounts to assuming a linear approximation, with
the linear part of the force due to space charge defined in
an rms sense (as shown in [1]). To the extent that such
an approximation holds, the generalized rms emittance edx

defined in (3) is invariant. One can simplify the expression
for the generalized rms emittance by observing that the
two equations (6) can be combined into a single equation
that has the same form as (8). This allows us to identify
kxdl ≠ kd2lDszd and kpxdl ≠ kd2lDszd0. Consequently,

e2
dx ≠ skx2l 2 D2kd2ld skp2

xl 2 D02kd2ld
2 skxpxl 2 DD0kd2ld2. (9)

Next, we can use edx to express kp2
x l in terms of the

other moments. By doing so, one can rewrite the rms
equations as

s00
x ≠

e2
dx 1 ssxs0

x 2 DD0kd2ld2

sxss2
x 2 D2kd2ld

2
1

sx
ss0

xd2

2 kxsx 1
K

2ssx 1 syd
1

kd2l
sx

µ
D
r

1 D02
∂

,

(10)

s00
y ≠

e2
y

s3
y

2 kysy 1
K

2ssx 1 syd
. (11)

The three equations (8),(10),(11), in the variablesD, sx ,
sy , provide a consistent description for the evolution of the
rms envelopes of a beam in a dispersive channel. They
can be used to achieve a simultaneous matching of the rms
beam envelopes and dispersion function. We emphasize
the fact that the invariant eds appearing in Eq. (10) co-
incides with the rms emittance at those locations where
D ≠ 0. Finally, notice that for 1yrszd ≠ 0 or kd2l ≠
0, we recover the usual envelope equations for straight
transport lines.

As an application and a test of the theory outlined in this
paper we now want to estimate the variation of the beam
parameters in the transition from a straight beam line into
a small ring. In the model we consider both the focusing
functions and the radius of curvature in the circular channel
are z independent (smooth approximation). Furthermore,
the external focusing is the same in the straight and in
the circular channel. We assume that the beam undergoes
a transition between two stationary distributions before
and after injection. For the purposes of this calculation
we do not need to specify how this matched injection
can be achieved. In general the solution of the matching
problem would require the solution of the rms envelope-
dispersion differential equations (8),(10),(11) for specified
initial and final beam conditions. The stationary solution
before injection reads

se2
x ds

s3
xs

2 kxsxs 1
K

2ssxs 1 sysd
≠ 0 (12)

(similar equation for sys with sxs and sys interchanged).
The subscript s indicates that the various quantities re-
fer to the beam in the straight channel before injection.
For a given value of the beam perveance K and emit-
tance the equation above can be solved for the rms size of
the beam sxs, sys. After injection in the circular chan-
nel a stationary beam must satisfy the set of equations
(8),(10),(11) with s0

y ≠ s0
x ≠ D0 ≠ 0. The connection

between the two sets of rms quantities is provided by the
assumption that the generalized emittance (3) in the hori-
zontal plane is conserved through injection. Of course,
the vertical rms emittance is also preserved because dis-
persion in our model affects the motion only in the hori-
zontal plane. We have calculated a numerical solution for
this set of equations for various values of the perveance
or beam current for the particular case of an initially round
beam sxs ≠ sys ≠ 0.5 cm. The other parameters are
[10] kx ≠ ky ≠ 17.44 m, r ≠ 1.82 m, corresponding to
an undepressed rms tune of nox ≠ noy ≠ 7.6.

p
kd2l ≠

0.007. For any given value of the perveance, the emit-
tance sexds ≠ seyds is tuned in such a way that different
beams with different perveance have the same rms radius
at injection.
In Fig. 1 we plot the rms horizontal size of the beam

after injection as a function of the tune depression. The
value is scaled with respect to the rms horizontal size
before injection. The tune depression nyno (i.e., the ratio
between the rms tune in the presence of space charge
n, and the tune in the absence of space charge no) is
also calculated with respect to the beam before injection.
We observe that the effect of higher space charge is to
enlarge the beam horizontally. The curve is compared to
results obtained in [8] where the same system was studied
by looking for self-consistent solutions of the Vlasov-
Poisson equations in the form of generalized KV beams
[11] in a recirculator (dots in the picture), with all the
nonlinearity due to space charge taken into account. The
agreement corroborates the validity of the new set of
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Sandra	  Aumon	  –	  ICFA	  Space	  Charge	  Workshop	  	  2013	  

Transverse	  EquaKons	  in	  SIS-‐100	  

Comparison	  of	  my	  small	  tracking	  code	  
with	  the	  opKcs	  compuKng	  by	  Madx.	  
No	  space	  charge	  and	  (delta	  p/p=0)	  
Good	  agreement.	  
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Qx=18.84	  
Qy=18.63	   From	  envelope	  equaKon	  

18.72	  with	  madx	  

1	  SIS-‐100	  sector	  

1	  SIS-‐100	  sector	  
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Transverse	  EquaKons	  in	  SIS-‐100	  
VerKcal	  Beta	  change	  with	  space	  charge	  for	  the	  expected	  verKcal	  tune	  
shiW,	  iniKal	  condiKons	  in	  the	  tracker	  the	  same	  as	  the	  non-‐SC	  case.	  

dQx~-‐0.39	  
dQy~-‐0.73	  

No	  space	  charge	  
Space	  charge	  
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Preliminary	  results	  shows	  about	  5%	  
change	  in	  beta-‐funcKon	  at	  some	  locaKon	  
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Transverse	  EquaKons	  in	  SIS-‐100	  
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Focus	  on	  one	  part	  of	  the	  SIS-‐100	  sector	  

Int.	  x10	  

Int.	  x5	  
dQy~-‐0.7	  
No	  SC	  
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Transverse	  EquaKons	  in	  SIS-‐100	  
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LaDce	  matching	  
•  Transverse	  space	  charge	  strong	  enough	  to	  change	  even	  slightly	  the	  opKcs	  

funcKons.	  
•  Consequences	  can	  be	  emirance	  blow	  up	  and/or	  beam	  size	  breathing	  during	  

the	  transport	  of	  the	  compressed	  bunch	  to	  the	  target.	  
•  	  New	  matching:	  find	  new	  matched	  soluKons.	  
•  Now,	  Newton	  Method,	  not	  robust	  yet.	  

•  This	  idea	  would	  be	  to	  go	  for	  Jacobian	  method	  like	  done	  in	  Madx	  (thanks	  R.	  
De	  Maria,	  F.	  Schmidt)	  

2
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Then	  delta	  are	  applied	  
at	  each	  component	  of	  
the	  vector	  

Jm =
f(x0 +�x)� x1

�x

xfp =
x1 � Jm(x0)x0

1� Jm(x0)

In	  one	  dimension,	  with	  xfp	  is	  the	  fixed	  point	  
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SimulaKons:	  outlook	  

•  Use	  PyOrbit	  (see	  the	  talk	  of	  J.	  Holmes	  and	  S.	  Appel	  for	  PyOrbit	  @	  GSI)	  
•  What	  is	  planned	  ?	  

-‐	  Purely	  longitudinal	  plan	  first	  for	  bunch	  compression	  
-‐	  Longitudinal	  +	  Transverse	  through	  the	  full	  SIS-‐100	  accelerator	  	  
with	  space	  charge.	  
-‐	  Then	  transport	  to	  the	  target	  to	  see	  any	  deformaKon	  of	  the	  beam	  spot.	  
-‐	  Maybe	  comparison	  with	  	  
MICROMAP	  from	  Giuliano.	  

26	  

Status:	  sKll	  convergence	  study	  of	  the	  
code,	  tesKng.	  
-‐	  Transverse	  KV	  distribuKon	  from	  
PyOrbit	  
-‐	  Longitudinal	  parabolic	  distribuKon.	  
	  

Nb	  turn	  

Beam	  envelop	  [m]	  

Difference	  about	  
0.012mm	  

100k	  part	  
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Conclusions	  -‐	  Outlooks	  

•  Longitudinal	  space	  charge	  should	  not	  be	  a	  problem	  for	  SIS-‐100	  
operaCon.	  

•  Large	  transverse	  space	  charge	  tune	  shiW	  (~dQx=-‐0.3,	  dQy=-‐0.7)	  during	  
bunch	  compression.	  

•  The	  opKcs	  is	  affected	  by	  space	  charge	  (up	  to	  this	  point,	  moderate	  effect,	  
can	  be	  corrected),	  HOWEVER	  this	  has	  to	  be	  propagate	  through	  the	  full	  
laDce	  and	  unKl	  the	  target.	  VerKcal	  dispersion	  ?	  

•  New	  periodic	  soluKons	  for	  mismatch	  beams	  wrt	  to	  the	  extracKon	  line.	  
•  3D	  simulaKons	  to	  observe	  the	  beam	  spot	  at	  the	  target	  but	  also	  to	  

compare	  envelope	  with	  analyKcal	  formula.	  
•  Comparison	  with	  simple	  env.	  Model	  (Oliver)	  
•  Other	  effects	  during	  bunch	  compression	  

(quadrupolar	  error,	  resonances	  etc..)	  

fast (0.1 ms or 100 turns) bunch compression the incoher-
ent space charge tune shift in SIS 100 will reach a |∆Q|
close to unity, much larger than the limiting |∆Q| of 0.3-
0.5 in conventional synchrotrons. In a bunch compression
experiment with 1 GeV protons in the CERN PS for about
20 machine turns (40 µs) a |∆Q| close to unity was al-
ready achieved [22]. The measured emittance blow-up dur-
ing the compression was 30-50 %. This result shows that
in an optimized machine large tune shifts can be tolerated
with tolerable emittance blow-up. In order to identify the
optimum machine design and working point for minimum
blow-up and tolerable beam loss (e.g. much less than 1 J/m
in SC magnets) self-consistent tracking simulations with
1M macro-particles are performed at GSI. Presently these
simulation studies focus on the planed fast bunch compres-
sion experiments with intense uranium beams in the exist-
ing SIS [23]. In these experiments space charge parameters
(final |∆Q| close to 0.7) similar to SIS 100 will be reached.
Simulations (see Fig. 5) for SIS show that during resonance
crossing particles trapped in islands can be expelled from
the beam core. However, all simulation particles remain
well within the SIS machine apertures.

Figure 5: Simulation of fast bunch compression in SIS. Re-
sulting particle distribution at the end of compression.

4 CONCLUSIONS
Accelerator design challenges for a next generation in-

flight facility arise from the tolerable relative beam loss in
a heavy ion driver (RIA, GSI) together with novel multiple
charge state operation (RIA), long accumulation or extrac-
tion times with intense partially stripped heavy ions (GSI)
and short-term operation outside the space charge limit
(GSI). The proposed RIA cw linac driver has the strong ad-
vantage of reduced space charge effects and reduced target
heating relative to a pulsed driver. Nevertheless, the lower
output energy, as compared to the NuPECC recommen-
dations, must be compensated by an order of magnitude
higher output intensity, that requires simultaneous acceler-
ation of multiple charge states. Besides the simulations,
operating a complex SC high energy driver within the low
loss budget in this novel mode still represents a major chal-
lenge. With a synchrotron driver solution, as proposed by
GSI, energies exceeding 1 GeV/u for uranium beams can
be reached. For the filling of storage rings with short-lived
RIBs a synchrotron driver is the optimum choice. However,

accumulation, acceleration and compression into a single
bunch of the required more than 1012 uranium ions in a
chain of synchrotrons exceeds the present demonstrated ca-
pability of the existing GSI facility by more than an order
of magnitude. The space charge limit requires operation
with medium-charge state uranium, that has high stripping
cross sections. The experience gained at LEAR and RHIC
shows that strong problems with beam loss induced pres-
sure bumps occur already at relatively low beam currents,
making the control of the dynamic vacuum pressure to-
gether with a distributed collimation concept for stripping
and space charge induced losses an essential point for the
design of the proposed two synchrotrons.
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Cross	  check	  with	  Madx	  
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Comparison	  ESME	  -‐	  AnalyKcal	  

31	  
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Venturini	  Paper:	  Hamiltonian	  
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the smooth approximation. The main purpose is to offer
a test of the new equations against a self-consistent calcu-
lation as presented in [8]. The results from this particular
example also show that for a tune depression smaller than
0.5 the new equations provide predictions that deviate from
the ones obtained from the usual rms envelope equations.
Consider beam of charged particles of massm in a trans-

port line with local radius of curvature rszd, subject to a
linear focusing (no space-charge forces for the moment)
on the horizontal plane and having a longitudinal momen-
tum pz ≠ pos1 1 dd with a relative deviation d from the
design momentum po , with Eo being the corresponding
energy. We assume that there is no longitudinal focusing.
Such a system is described by the Hamiltonian

H ≠
1
2

p2
x 1

kxszd
2

x2 1
m2c4

E2
o

d2 2
x

rszd
d . (1)

One can easily verify that because of the coupling term
dxyr the standard rms emittance e2

x ≠ skx2l kp2
x l 2

kxpxl2d, is not an invariant for the system (1). Here k?l
denotes the averaging over the phase space variables.
Our problem is to find a new quantity similar to the rms
emittance that is preserved in the presence of dispersion.
The strategy is to write a canonical transformation that
removes the coupling and casts the Hamiltonian in a form
for which the invariant can be immediately written. The
invariant in the original variables is then recovered by
reversion of the canonical transformation.
A suitable canonical transformation is generated by

G2sx, px , zd ≠ pxfx 2 dDszdg 1 xdD0szd, where Dszd is
a function that will eventually be identified with the dis-
persion function: x ≠ x 2 dDszd and px ≠ px 1 dD0szd.
The transformed Hamiltonian reads

H ≠
1
2

p2
x 1

kx

2
x2 1

m2c4

E2
o

d2

1 dx

µ
D00 1 kxD 2

1
r

∂
1 . . . .

The remaining terms (. . .) in the Hamiltonian contain a
combination of d and functions of z. Since they affect
only the evolution of the variable canonically conjugated
to d (i.e., the RF phase), which we are not interested
in, they can be disregarded. Clearly, if the function D
is chosen in such a way that D00 1 kxszdD 2 1yrszd ≠
0, the coupling between d and x vanishes and we can
immediately conclude that the quantity e2

x ≠ skx2l kp2
xl 2

kxpxl2d is a linear invariant for the Hamiltonian H. Then,
if we express ex in terms of the old variables we obtain a
quantity invariant for our original system. We have

kx2l ≠
Z

x2fsx, px , dd dm

≠
Z

sx 2 dDd2fsxsx, px , dd,pxsx, px , dd, dd dm

≠ kx2l 2 2Dkxdl 1 D2kd2l . (2)

Here, dm ≠ dx dpx dd, dm ≠ dx dpx dd, and dm ≠
dm because the transformation is canonical. Notice that
since fsx, px , dd is a generic function, then f̃sx, px , dd ≠
ffxsx, px , dd,pxsx, px , dd, dg is also a generic function.
That is, the equality (2) holds for any distribution func-
tion. By the same token one can evaluate kp2

xl and kxpxl
in terms of the moments in the old variables, and finally
write the new invariant as

e2
x ≠ e2

dx ≠ skx2l 2 2Dkxdl 1 D2kd2ld
3 skp2

x l 2 2D0kpxdl 1 D02kd2ld
2 skxpxl 2 Dkpxdl 2 D0kxdl 1 DD0kd2ld2. (3)

We have introduced the notation edx for the new invari-
ant, to which in the following we will refer as “gener-
alized emittance.” Notice that in a straight beam line,
where no dispersion is present (D ≠ D0 ≠ 0) or for a
monochromatic beam with vanishing longitudinal mo-
mentum spread (kd2l ≠ 0), the quantity (3) coincides with
the usual rms emittance. Incidentally, we notice that the
invariant introduced here is different from the generalized
emittances defined, e.g., in [9]. Those quantities are ex-
amples of “kinematic invariants” the invariance of which
is preserved under any linear symplectic map. The quan-
tity defined here is more similar to a “dynamic invariant”
(see [9] for this terminology), the form of which depends
on the details of the physical system through the disper-
sion function Dszd.
Let us now introduce the space-charge forces into the

picture. The Hamiltonian describing a continuous beam
with space charge and in the presence of dispersion reads
(q is the charge, yz the longitudinal velocity, g the
relativistic factor)

H ≠
1
2

sp2
x 1 p2

y d 1
kxszd

2
x2 1

kyszd
2

y2

1
q

my2
z g3 csx, y, zd 2

d

rszd
x 1

m2c4

E2
o

d2. (4)

The self-force is described by the potential c , and includes
the contribution from both the magnetic and electric field
(see, e.g., [4]). In writing (4) we assumed that the nonlin-
earities due to the external focusing and the transverse cur-
rent due to the bending of the beam are negligible. From
the Vlasov equation associated with the Hamiltonian (4)
one can derive the following equations for the second mo-
ments (go ≠ qymy2

z g3):
d
dz

kx2l ≠ 2kxpxl , (5a)

d
dz

kp2
xl ≠ 22kxkxpxl 2 2go

ø
px

≠

≠x
c

¿
1

2
r

kpxdl ,

(5b)

d
dz

kxpxl ≠ kp2
xl 2 kxkx2l 2 go

ø
x

≠

≠x
c

¿
1

1
r

kxdl ,

(5c)
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the smooth approximation. The main purpose is to offer
a test of the new equations against a self-consistent calcu-
lation as presented in [8]. The results from this particular
example also show that for a tune depression smaller than
0.5 the new equations provide predictions that deviate from
the ones obtained from the usual rms envelope equations.
Consider beam of charged particles of massm in a trans-

port line with local radius of curvature rszd, subject to a
linear focusing (no space-charge forces for the moment)
on the horizontal plane and having a longitudinal momen-
tum pz ≠ pos1 1 dd with a relative deviation d from the
design momentum po , with Eo being the corresponding
energy. We assume that there is no longitudinal focusing.
Such a system is described by the Hamiltonian

H ≠
1
2

p2
x 1

kxszd
2

x2 1
m2c4

E2
o

d2 2
x

rszd
d . (1)

One can easily verify that because of the coupling term
dxyr the standard rms emittance e2

x ≠ skx2l kp2
x l 2

kxpxl2d, is not an invariant for the system (1). Here k?l
denotes the averaging over the phase space variables.
Our problem is to find a new quantity similar to the rms
emittance that is preserved in the presence of dispersion.
The strategy is to write a canonical transformation that
removes the coupling and casts the Hamiltonian in a form
for which the invariant can be immediately written. The
invariant in the original variables is then recovered by
reversion of the canonical transformation.
A suitable canonical transformation is generated by

G2sx, px , zd ≠ pxfx 2 dDszdg 1 xdD0szd, where Dszd is
a function that will eventually be identified with the dis-
persion function: x ≠ x 2 dDszd and px ≠ px 1 dD0szd.
The transformed Hamiltonian reads

H ≠
1
2

p2
x 1

kx

2
x2 1

m2c4

E2
o

d2

1 dx

µ
D00 1 kxD 2

1
r

∂
1 . . . .

The remaining terms (. . .) in the Hamiltonian contain a
combination of d and functions of z. Since they affect
only the evolution of the variable canonically conjugated
to d (i.e., the RF phase), which we are not interested
in, they can be disregarded. Clearly, if the function D
is chosen in such a way that D00 1 kxszdD 2 1yrszd ≠
0, the coupling between d and x vanishes and we can
immediately conclude that the quantity e2

x ≠ skx2l kp2
xl 2

kxpxl2d is a linear invariant for the Hamiltonian H. Then,
if we express ex in terms of the old variables we obtain a
quantity invariant for our original system. We have

kx2l ≠
Z

x2fsx, px , dd dm

≠
Z

sx 2 dDd2fsxsx, px , dd,pxsx, px , dd, dd dm

≠ kx2l 2 2Dkxdl 1 D2kd2l . (2)

Here, dm ≠ dx dpx dd, dm ≠ dx dpx dd, and dm ≠
dm because the transformation is canonical. Notice that
since fsx, px , dd is a generic function, then f̃sx, px , dd ≠
ffxsx, px , dd,pxsx, px , dd, dg is also a generic function.
That is, the equality (2) holds for any distribution func-
tion. By the same token one can evaluate kp2

xl and kxpxl
in terms of the moments in the old variables, and finally
write the new invariant as

e2
x ≠ e2

dx ≠ skx2l 2 2Dkxdl 1 D2kd2ld
3 skp2

x l 2 2D0kpxdl 1 D02kd2ld
2 skxpxl 2 Dkpxdl 2 D0kxdl 1 DD0kd2ld2. (3)

We have introduced the notation edx for the new invari-
ant, to which in the following we will refer as “gener-
alized emittance.” Notice that in a straight beam line,
where no dispersion is present (D ≠ D0 ≠ 0) or for a
monochromatic beam with vanishing longitudinal mo-
mentum spread (kd2l ≠ 0), the quantity (3) coincides with
the usual rms emittance. Incidentally, we notice that the
invariant introduced here is different from the generalized
emittances defined, e.g., in [9]. Those quantities are ex-
amples of “kinematic invariants” the invariance of which
is preserved under any linear symplectic map. The quan-
tity defined here is more similar to a “dynamic invariant”
(see [9] for this terminology), the form of which depends
on the details of the physical system through the disper-
sion function Dszd.
Let us now introduce the space-charge forces into the

picture. The Hamiltonian describing a continuous beam
with space charge and in the presence of dispersion reads
(q is the charge, yz the longitudinal velocity, g the
relativistic factor)
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The self-force is described by the potential c , and includes
the contribution from both the magnetic and electric field
(see, e.g., [4]). In writing (4) we assumed that the nonlin-
earities due to the external focusing and the transverse cur-
rent due to the bending of the beam are negligible. From
the Vlasov equation associated with the Hamiltonian (4)
one can derive the following equations for the second mo-
ments (go ≠ qymy2

z g3):
d
dz

kx2l ≠ 2kxpxl , (5a)

d
dz

kp2
xl ≠ 22kxkxpxl 2 2go

ø
px

≠

≠x
c

¿
1

2
r

kpxdl ,

(5b)

d
dz

kxpxl ≠ kp2
xl 2 kxkx2l 2 go

ø
x

≠

≠x
c

¿
1

1
r

kxdl ,

(5c)

97

VOLUME 81, NUMBER 1 P HY S I CA L REV I EW LE T T ER S 6 JULY 1998

the smooth approximation. The main purpose is to offer
a test of the new equations against a self-consistent calcu-
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0.5 the new equations provide predictions that deviate from
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energy. We assume that there is no longitudinal focusing.
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The remaining terms (. . .) in the Hamiltonian contain a
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where no dispersion is present (D ≠ D0 ≠ 0) or for a
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mentum spread (kd2l ≠ 0), the quantity (3) coincides with
the usual rms emittance. Incidentally, we notice that the
invariant introduced here is different from the generalized
emittances defined, e.g., in [9]. Those quantities are ex-
amples of “kinematic invariants” the invariance of which
is preserved under any linear symplectic map. The quan-
tity defined here is more similar to a “dynamic invariant”
(see [9] for this terminology), the form of which depends
on the details of the physical system through the disper-
sion function Dszd.
Let us now introduce the space-charge forces into the

picture. The Hamiltonian describing a continuous beam
with space charge and in the presence of dispersion reads
(q is the charge, yz the longitudinal velocity, g the
relativistic factor)
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The self-force is described by the potential c , and includes
the contribution from both the magnetic and electric field
(see, e.g., [4]). In writing (4) we assumed that the nonlin-
earities due to the external focusing and the transverse cur-
rent due to the bending of the beam are negligible. From
the Vlasov equation associated with the Hamiltonian (4)
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value very close to the one it had initially. In other words, if
maching is done the εx emittance growth appears to be al-
most completely reversible (at least over one turn). This
is consistent with εdx remaining basically constant. On
the other hand εdx increases noticeably in the mismatched
case.
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Figure 3: Vertical effective emittances (in units of mm-
mrad) for the matched and mismatched case; I=50 mA.
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Figure 4: Horizontal and vertical effective emittances and
invariant of Eq. (2) (in units of mm-mrad) for the matched
and mismatched case; I= 100mA.

Next, in Fig. 3 the evolution of the vertical emittances
are reported. The rms εy emittance increases because of
the nonlinear coupling with the horizontal motion induced
by space charge. This effect is not captured by Eqs. (2).
However, notice how a matching based on Eq. (2) never-
theless succeeds in reducing the amount of the y-emittance
growth. The sharp growth that we can observe at extraction
is due in part to the fact that at extraction the matching was
done under the assumption that εy was the same as at injec-
tion. In Fig. 4 we show the evolution of the emittances for
a case with larger current I = 100mA (corresponding to a
detuning ν/ν0 = 0.15). In this case the matching is less ef-
ficient although still significant. In the last picture (Fig. 5)
we report the case in which the matching is done using the
equations proposed by A. Garren [1]. One can see that un-
der the regime we are considering that model would lead to

an evenmore pronouncedmismatch (A. Garren's equations
coincide with Eqs. (2) in the zero energy spread limit).
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Figure 5: Horizontal and vertical effective emittances (in
units of mm-mrad) for a matching done using a less accur-
ate model; I= 50mA.

4 CONCLUSIONS
The results reported in this paper show that use of the gen-
eralized rms envelope equations appears to be effective in
achieving acceptable matching conditions for space charge
dominated beams in the presence of an energy spread.
Moreover, if the tune depression is not extreme the rms
emittance growth in the horizontal plane due to dispersion
seems to be to a large extent reversible. A measure of the
non reversibility is given by the growth of the generalized
emittance defined in Eq. (3).

5 AKNOWLEDGEMENTS
We are grateful to A. Friedman and D. Grote for permission
to use and assistance with the code WARP.

6 REFERENCES
[1] A. Garren, Proc. Heavy Ion Fusion Workshop 1979, Reports

LBL-10301/SLAC-PUB 2575, UC-28, p. 297.
[2] J.J. Barnard et al., 1992 Linear Accelerator Conference Prof.

AECL-10728 Vol. 1, p. 229; J.J. Barnard et al., AIP Conf.
Proceedings, 448 (1998), p. 221.

[3] S.Y. Lee and H. Okamoto, Phys. Rev. Lett. 80, 23 (1998) p.
5133; J.A. Holmes et al., AIP Conf. Proceedings, 448 (1998)
p. 254.

[4] M. Venturini and M. Reiser, Phys. Rev. Lett. 81, 1 (1998), p.
96.

[5] M. Venturini and M. Reiser, Phys. Rev. E, 57, 5 (1998), p.
4725.

[6] M. Venturini, R.A. Kishek, and M. Reiser, AIP Conf. Pro-
ceedings, 448 (1998), p. 278.

[7] M. Reiser et al., The Maryland Electron Ring for Investig-
ating Space-Charge Dominated Beams in a Circular FODO
System, These Proceedings.

[8] A. Friedman, AIP Conf. Proceedings, 448 (1998), p. 329.

3276

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999


