

Loss of Landau damping for reactive impedance and a double RF system

T. Argyropoulos, A. Burov, E. Shaposhnikova

SPACE CHARGE 2013, 16-19 April 2013, CERN

Outline

Longitudinal reactive impedance

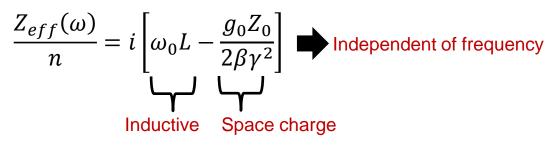
Analytical calculations

Simulations

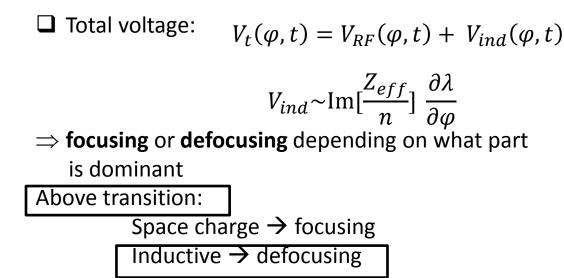
□ Application for the SPS ppbar parameters

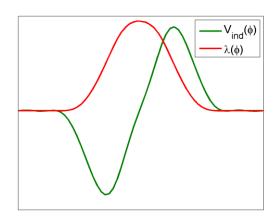
Results for

- Bunch lengthening mode (BLM)
- Single RF and bunch shortening mode (BSM)


SPS today

Conclusions




Longitudinal reactive impedance

■ Reactive beam coupling impedance:

n = ω/ω_0 , ω_0 the revolution angular frequency, $g_0 = 1 + 2\ln(b/\alpha)$ for a circular beam of radius α in a circular beam pipe of radius b

Analytical calculations

- Method: finding the Van Kampen modes for the perturbation *f* of particle distribution (A.Burov, HB2010)
- □ Find the steady state starting from a known particle distribution function F(I), I is the canonical action

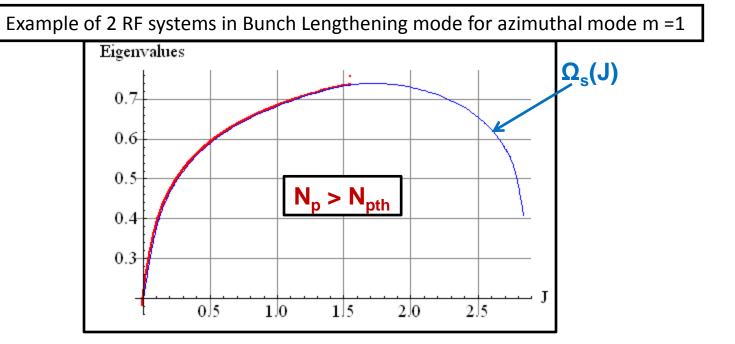
□ Solve the Vlasov equation:

$$\frac{\partial f}{\partial t} + \Omega(I)\frac{\partial f}{\partial \varphi} - \frac{\partial V}{\partial \varphi}F'(I) = 0$$

Following the Oide and Yokoya expansion:

$$f(I,\varphi,t) = e^{-i\omega t} \sum_{m=1}^{\infty} [f_m(I)\cos m\varphi + g_m(I)\sin m\varphi]$$

and **neglecting** azimuthal mode coupling leads to the equation:


$$[\omega^2 - m^2 \Omega^2(I)]f(I) = -m^2 \Omega(I)F'(I) \int V_m(I,I')f(I')dI'$$

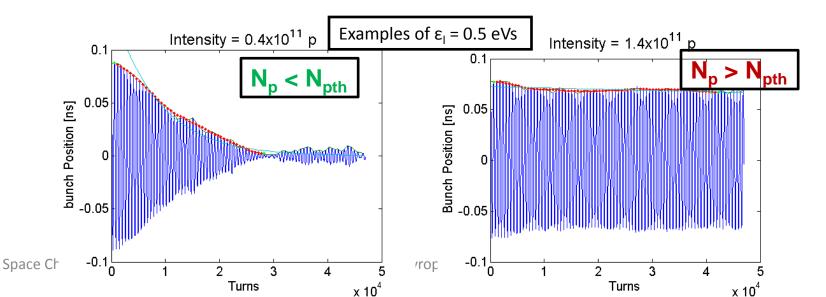
standard eigen-system problem of linear algebra

Analytical calculations

Continuous and discrete spectrum

- □ **Continuous**: singular modes \rightarrow coincide with the incoherent frequency spectrum of the particles \rightarrow Landau damped
- □ Discrete: smooth functions → unstable (Im(ω_{μ})≠0) or without Landau damping (mode above the incoherent particle spectrum)

Simulations

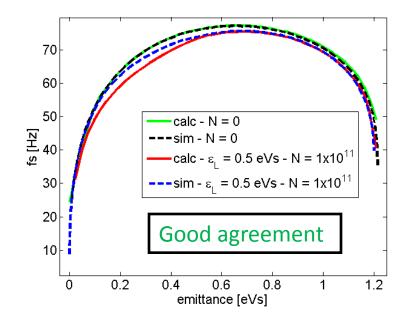

Simulations were done using a Matlab code for single bunch only for comparison with the analytical calculations for **dipole mode** (m = 1)

□ 5x10⁵ macro-particles, enough to see the effect of Landau damping

□ Matched distribution created and injected with a phase error of 3°

 \Box Track for t ~ 300 T_s

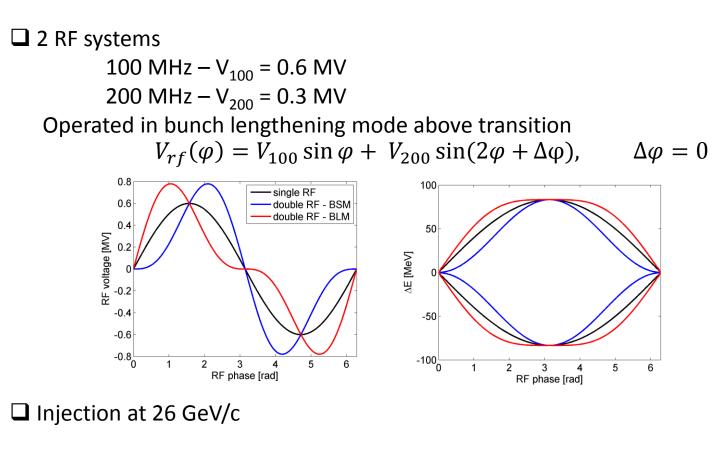
□ Average the amplitude of the dipole oscillations $\langle \phi_{max} \rangle$ after the transients (>100 T_s)



6

Calculations vs simulations

Comparison of steady-state

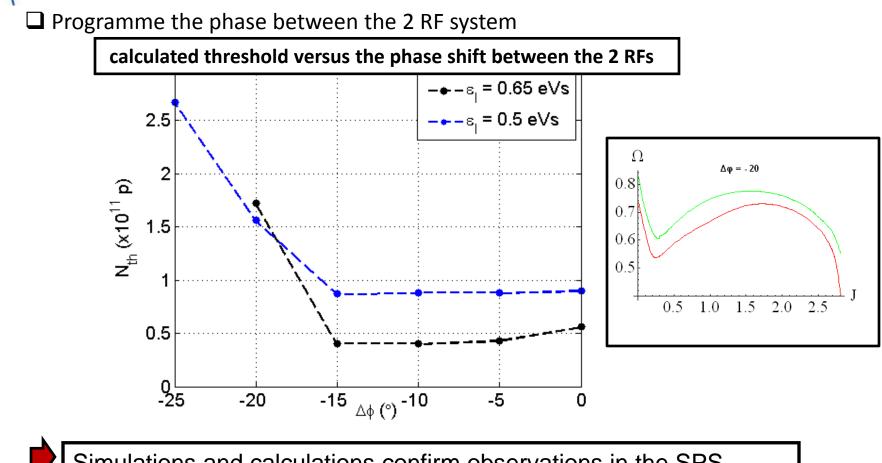

In simulations \mathbf{f}_{s} is found by tracking a few particles in the steady-state RF bucket

Benchmarking with another tracking code (M. Migliorati) for single RF and different particle distributions is in very good agreement

Applications

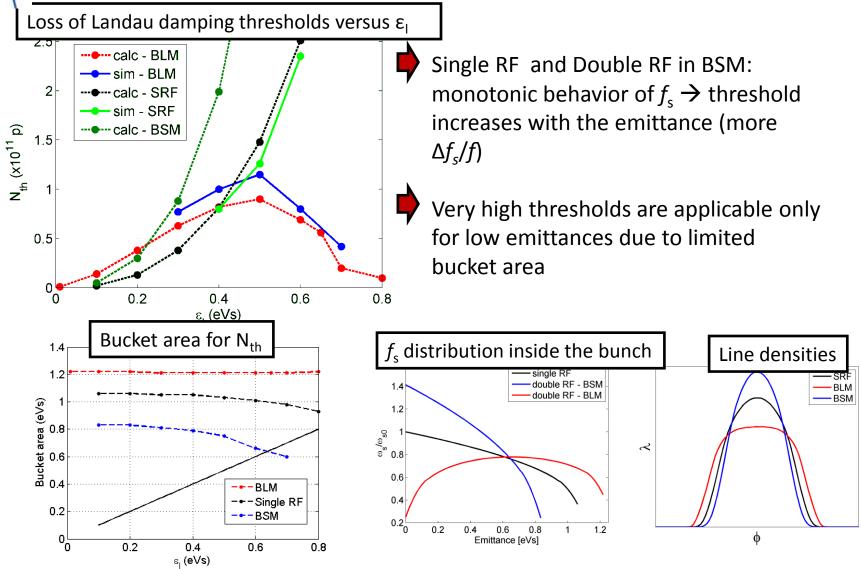
Based on the parameters of the SPS ppbar operation

D Particle distribution $F(I) \sim (I_{lim} - I)^2$

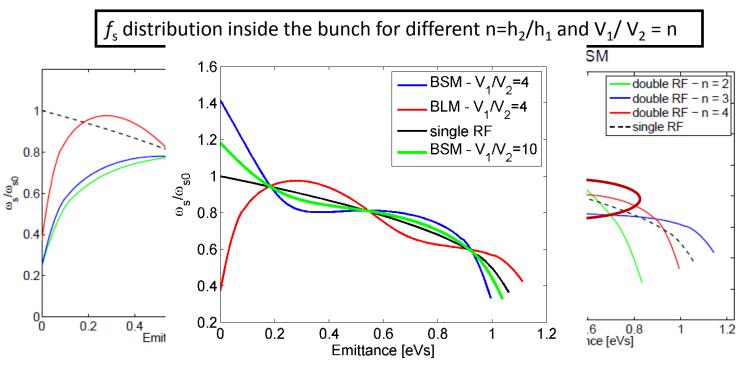

SPS ppbar observations

Results for BLM

ERM


Results for BLM

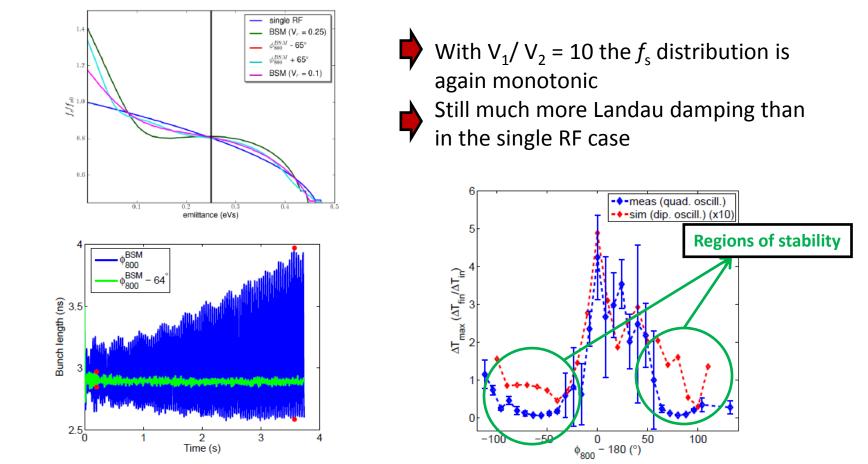
- Simulations and calculations confirm observations in the SPS during ppbar
 - Unstable bunches with emittance > 0.65 eVs
 - Can be stabilized in BL-mode by some phase shift



Results for Single and Double RF

Effects of the f_s

Higher is n larger is spread for the same voltage ratio ($V_1/V_2 = n$) but a region with zero derivative is closer to the bunch center


- BLM: limitation to the bunch length (emittance)
- BSM: limitation to the voltage ratio or bunch length

Now SPS has n=4 (red curves) with injected (LHC beam) emittances > 0.35 eVs \rightarrow always unstable in BLM \rightarrow operates in BSM with V₁/V₂ = 10

T. Argyropoulos

SPS today – single bunch studies

 Very good agreement between measurements and simulations (ESME) (with the SPS impedance model):

- single bunches are unstable in BS-mode with $V_1/V_2 = 4$
- can be stabilised by significant phase shift of 800 MHz RF (IPAC12)

Space Cł

Conclusions

- The synchrotron frequency distribution inside the bunch is important for stability: provides the frequency spread necessary for Landau damping
- **D** But regions with $\omega_{s}'(I) = 0$ can have the opposite effect
- This was proved for reactive impedance and BLM by both calculations and simulations, also in agreement with observations in SPS during ppbar
- Phase shift between the two RF systems helps to damp the dipole oscillations but the f_s distribution still has a non-monotonic behavior (studies are on-going)
- □ In the present SPS the single bunch instabilities in BSM (V2/V1=0.25) can be also damped by shifting the phase between the 2 RF systems as have been shown in measurements and simulations.

References

- 1. A. Burov, Van Kampen modes for bunch longitudinal motion, Proc. HB2010, 2010.
- 2. T. Linnecar, E. N. Shaposhnikova, CERN SL/Note 92-44 (RFS)
- E. Shaposhnikova, T.Bohl and T. Linnecar, Beam transfer functions and beam stabilisation in a double Rf system, Proc. PAC'05.
- 3. K. Oide, A Mechanism of longitudinal single-bunch instability in storage rings, KEK Preprint 94-1383.
- 4. T. Bohl et al., Study of different operating modes of the 4th RF harmonic Landau damping system in the CERN SPS, Proc. EPAC'98, Stockholm, Sweden, 1998.
- O. Boine-Frankenheim and T. Shukla, Space charge effects in bunches for different rf wave forms, PRST-AB 8, 034201 (2005).
- 5. T. Argyropoulos et al., Thresholds of longitudinal single bunch instability in single and double RF systems in the CERN SPS, Proc. IPAC'12.
- 6. C.M. Bhat et al., Stabilizing effect of a double-harmonic RF system in the CERN PS, Proc. PAC09, 2009.