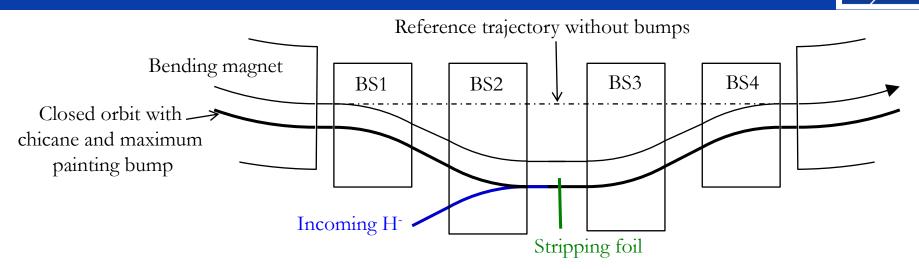


Space Charge Workshop, 16th April 2013

- Introduction
- Practical Aspects of Charge Exchange Injections
 - Injection chicane and induced perturbations
 - Integration of a dump
 - Issues related to foil damage and life-time
- Transverse Painting
- Longitudinal Painting schemes
- Summary & Conclusion



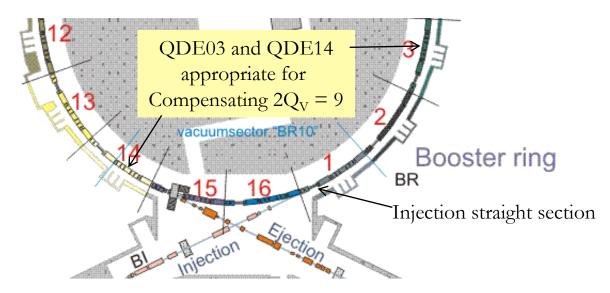
Introduction

- Brief recap on multi-turn injection schemes
 - $\hfill\square$ "Conventional" with stacking in phase space
 - Limited by Liouville theorem: distinct injected turns in distinct phase space regions
 - Mostly (e.g. CERN PS Booster) stacking in horizontal phase space, but stacking in longitudinal phase space or exploiting transverse and longitudinal phase space possible
 - High losses inherent to injection process
 - Rather limited for shaping distributions, high brightness of beam from Linac an issue
 - Not further considered in this presentation
 - □ Charge exchange injection
 - Not limited by Liouville theorem: distinct turns injected into same phase space regions
 - Strongly reduced losses (dominated by unstripped ions and scattering)
 - Larger number of turns (scattering in stripping foil still a limit) can be injected
 - Less demanding for Linac beam intensity and brightness
 => but for proton machine: generation H⁻ more difficult for source)
 => lower Linac RF power requirements
 - Allows painting schemes to shape beam distributions for high brightness and intensity
 - □ Chopper required for longitudinal painting schemes (aiming for large bunching factors)
 - □ Transverse painting with orbit bumps and steering of incoming beam
 - Focus of the presentation

Practical Aspects of Charge Exchange Injections - Injection chicane and induced perturbations

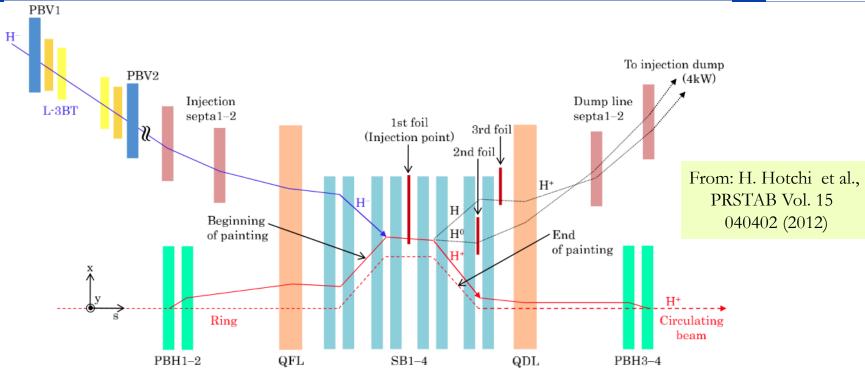
• Charge exchange injection with "chicane" (BS magnets) to merge incoming and circulating beam

- □ In most cases superposition of painting bump and chicane bump
- □ In principle one bump ("chicane" varying already during injection) sufficient as e.g. at FNAL
- Non-linear (multipolar components) may be a limitation
 - E.g. at SNS: complicated shape of magnetic field of chicane magnets with longitudinal component at the foil location (motivation explained later: magnetic field to strip excited H⁰ and long. component to bring electrons away from foil)
 - $\hfill\square$ magnets optimized such that effects (roughly) cancel
 - E.g. for CERN Booster: corrugated vacuum chamber and time varying multipolar components due to eddy currents studied at present to evaluate feasibility (ceramic chambers as fallback solution)


Space Charge Workshop

CER

Practical Aspects of Charge Exchange Injections - Injection chicane and induced perturbations



- Lattice perturbation by focusing due to chicane magnets is a potential performance limitations (e.g. at FNAL, thanks to F. Ostiguy for drawing our attention to this effect)
 - □ Make BS magnets as long as possible to reduce additional focusing and compensate lattice perturbations (as much as possible) by additional quadrupolar fields
 - □ "Active" compensation of perturbations due to chicane in the CERN Booster
 - Trims on QDE magnets (on additional windings ...) in period 03 and 14 with appropriate phases for an effective compensation with large vertical β-functions (and small horizontal β's)

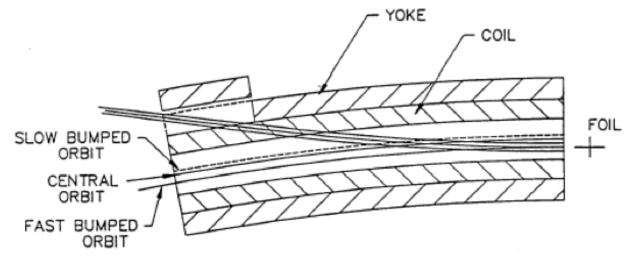
Slow chicane fall (say 5 ms) such that quad trim converter can follow programmed currents

Practical Aspects of Charge Exchange Injections - Integration of a dump for un-stripped ions

Sketch of an H⁻ charge exchange injection (J-Parc 3 GeV ring) with dump for unstripped ions

- Non-stripped ions (small fraction during regular operation, full intensity in case of broken foil) activate and possibly damage machine ... potential intensity limitation
- Bring non-stripped ions in a controlled way to an external or internal (if space contraints do not allow guiding unstripped ions away from the machine as e.g. for the CERN PSB) dump
- Excited H⁰ may be an issue solved by inserting foil into a region with relatively strong magnetic field (stripping highly excited H⁰ within short distance, see work on SNS)

C. Carli


Space Charge Workshop

CERI

Practical Aspects of Charge Exchange Injections

- A simple scheme without chicane (main bends to merge beams)


- Usage of a lattice bend to merge incoming and circulating beam(example: BNL Booster)
 - \Box Elegant solution no need for chicane bump
 - \Box Displaced yoke to create space for incoming beam impact on field quality?
 - □ Painting bump
 - Weaker deflection than injection chicane magnets needed to move circulating beam from foil
 - Less perturbations for optics
 - $\hfill\square$ More difficult (impossible) to integrate dumps for unstripped ions
 - Magnet damage close to charge exchange injection region
 - □ (Conventional multiturn injection for ions into BNL Booster in another section)

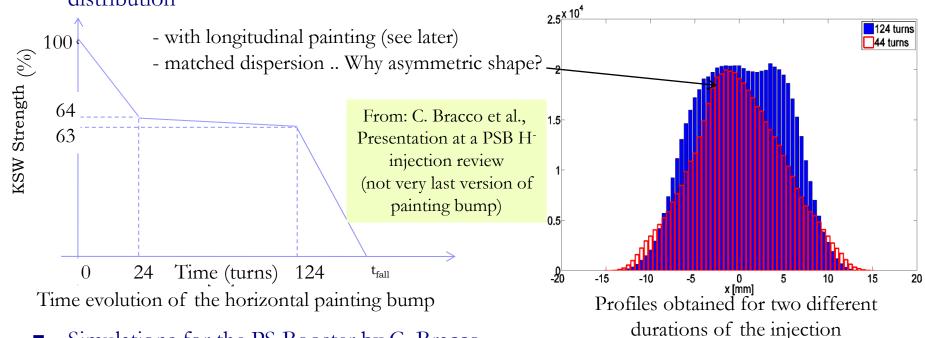
C. Carli

Practical Aspects of Charge Exchange Injections

- Issues related to foil damage and life-time

- Limited life-time and damage of foil may limit possible intensity (and brightness)
- Direct heating of the foil due to incoming H⁻ and circulating p
 - □ Limit number of foil hits: choice of transverse painting parameter
 - □ Increase part of foil surface hit by beam: choice of transverse painting parameter, lattice with large betatron functions at foil (not favorable for blow-up due to scattering), ...
 - Foil thickness: thinner foil enhances temperature decrease between injections (via radiation, more relevant for high repetition rate), but choice limited by stripping efficiency
- Electrons stripped from H⁻ may hit foil several times or damage surrounding equipment
 - Encountered during SNS intensity ramp up
 - Cure: careful design (simulations) of magnetic fields and electron trajectories around the foil to safely dump stripped electrons
 - ... cure/mitigation of foil damage in general:
 - □ Efficient foil exchange mechanism
 - $\hfill\square$ Use other methods, e.g. Laser, for stripping

SNS foil holder damaged (molten parts) by convey electrons



Space Charge Workshop

CERN, 16th April 2013

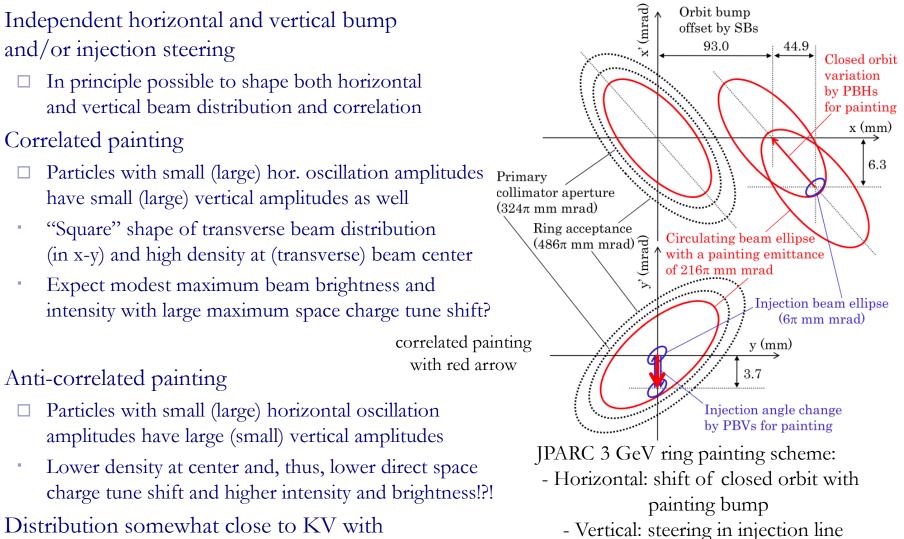
Transverse Painting

Combination of orbit bump(s) and steering of incoming beam allows shaping transverse distribution

Simulations for the PS Booster by C. Bracco

- □ At the beginning: incoming beam injected on closed orbit (small emittances)
- \Box Few turns injected with small betatron oscillation
- $\hfill\square$ Many turns injected with large betatron amplitudes
- Flat transverse profile yielding small space charge tune shift (for given emittances)
- Optimum for high brightness and intensity?
- □ PS Booster: vertical emittance by steering and betatron mismatch vertical painting discussed

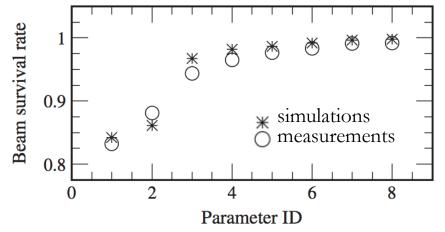
C. Carli


Space Charge Workshop

CERN, 16th April 2013

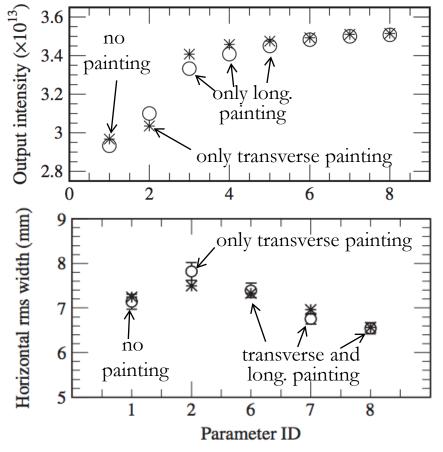
ER

Transverse Painting


Horizontal and vertical offset along a circle ... should be best for direct space charge?

C. Carli

Transverse Painting



- Study comparing various painting schemes for JPARC 3 GeV ring
 - □ Longitudinal painting (see next section)
 - \Box Only correlated transverse painting

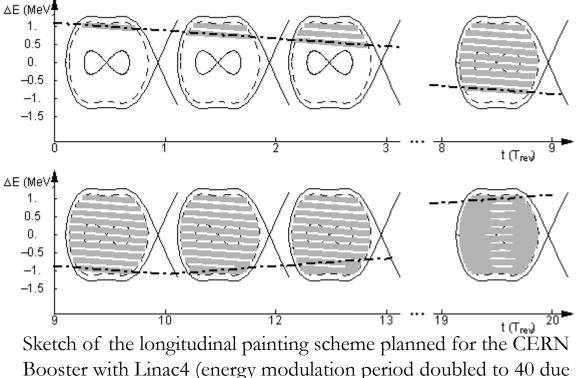
- Unclear whether correlated or uncorrelated transverse painting gives higher beam brightness and intensity (simulations seem to indicate that correlated painting is better)
 - Why does anti-correlated painting not allow higher brightness due to lower direct space charge tune shift?

From: H. Hotchi et al., PRSTAB Vol. 15 040402 (2012)

Longitudinal painting clearly improves possible brightness and intensity (next section)

C. Carli

Longitudinal Painting - general considerations



- Aim: generate suitable longitudinal phase space density to
 - □ Maximize bunching factor (ratio between average beam current and peak current)
 - □ Minimize space charge tune shift (for fixed transverse beam parameters)
- Role of synchrotron motion and possible strategies
 - □ Significant synchrotron motion during injection process
 - Large RF voltages, high harmonics (RCS?), many injected turns e.g.: J-PARC 3 GeV ring
 - Strategy:
 - Use synchrotron motion to distribute particles over bucket ... combined with energy offset or other schemes to avoid high density at the center
 - □ Little synchrotron motion during injection process
 - Small RF voltage, low harmonic, "few" injected turns
 e.g. scheme proposed for CERN Booster (>2018) with Linac4
 - Impossibility to exploit synchrotron motion to distribute particles over bucket
 - Strategies:
 - Fill bucket as well as possible with chopping and appropriate energy spread of incoming beam ("rectangular" shape in phase space of incoming beam does not match bucket)
 - "Active" painting scheme with Linac energy modulation

Space Charge Workshop

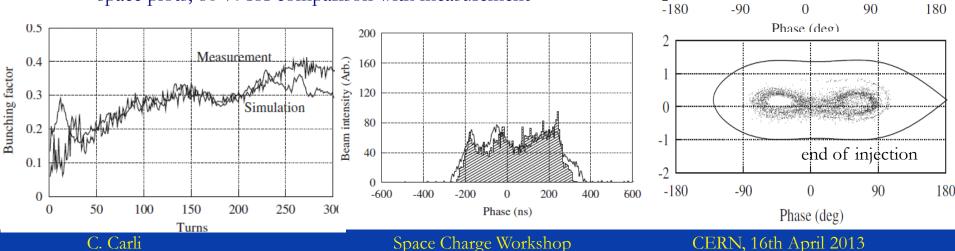
Longitudinal Painting - "active" painting proposed for CERN Booster

- CERN
- Low RF voltages and harmonic and, thus, little synchrotron motion even
 - during longest injections
 - Double harmonic bucket to be filled homogeneously
 - Synchrotron motion cannot be exploited and is rather a perturbation
 - "Active" longitudinal painting with energy modulation generated by Linac4
 - (needed after Linac4 to CERN Booster connection around 2018)

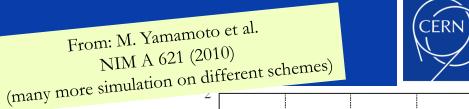
to Linac4 RF power limitations)

- Expected gain: about 10 % increase in bunching factor
- Consequences: need for Linac energy modulation and more complicated synchronization between the two machines

C. Carli


Space Charge Workshop

Longitudinal Painting - JPARC 3 GeV ring scheme


- Double harmonic system for flat buckets
- Injection of 234 turns with almost large RF voltage with harmonics 2 and 4 gives significant motion in longitudinal phase space during injection
- Many schemes with different 2nd harmonic voltage, energy offset, 2nd harmonic phase shift simulated

Best results

- Energy offset of Linac beam (synchronous particle moves by $\Delta p/p \approx \pm 10^{-3}$, bucket height $\Delta p/p \approx \geq \pm 1.1 \ 10^{-3}$) of $\Delta p/p \approx -0.2 \ 10^{-3}$
- Modulation of phase between first and second harmonic (moves stable fixed point): 60 % for simulations in phase space plots, 80 % for comparison with measurement

CERN, 16th April 2013

after 20 turn

after 60 turn

Phase (deg)

90

180

From: M. Yamamoto et al.

NIM A 621 (2010)

∆p/p (%)

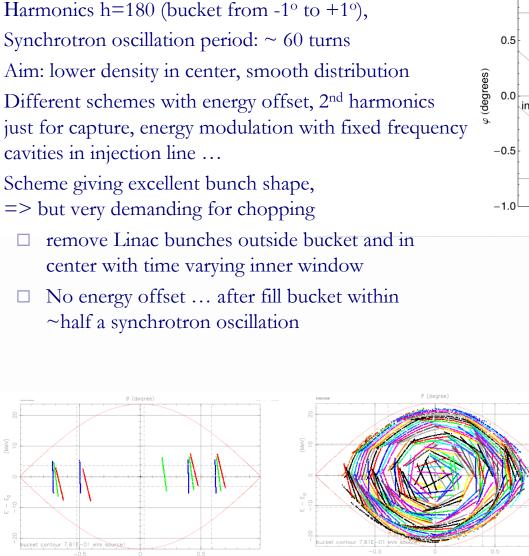
Δp/p (%)

-1

-2 -180

2

 $\mathbf{0}$

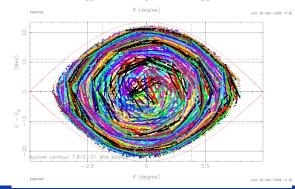

-1

-2

-90


Longitudinal Painting - A scheme for LHC bunches (as assumed at that time) for the CERN PS2 proposal





Space Charge Workshop

C. Carli

CERN, 16th April 2013

Summary and Conclusion

- A few practical issues to be taken into account to avoid limitations not directly linked to direct space charge in design lattice
 - □ Perturbations due to injection hardware,
 - $\hfill\square$ Proper dumping to avoid inacceptable activation
 - \Box Protection of foil and surrounding against damage by different beams (H⁻, protons electrons)
- Phase space painting
 - $\hfill\square$ Possible with charge exchange injection
 - □ Many options to tailor longitudinal and transverse beam distributions with chopping and transverse painting schemes
 - $\hfill\square$ Shaping of transverse distributions with orbit bumps and steering of injected beam
 - □ Longitudinal painting schemes aim at large bunching factors (average beam current divided by peak current) and depend on synchrotron motion during injection
- Optimum painting strategies
 - Not so obvious whether correlated or anti-correlated transverse painting allows higher brightness & intensity Why??
 - □ Increase of bunching factor by longitudinal increase possible intensity & brightness
- Thanks a lot to Gianluigi Arduini, Sarah Cousineau, Vincenzo Forte, Hideaki Hotchi, Jeff Holmes, Haixin Huang, Bettina Mikulec ... for precious help

C. Carli

Space Charge Workshop

CERN, 16th April 2013