Instrumentation for space charge effects

Eva Barbara Holzer CERN BE/BI

With the kind support of:

B. Mikulec, T. Bohl, B. Dehning, F. Roncarolo, M. Sapinski,
Ch. Zamantzas, T. Lefevre, J. Belleman, D. Belohrad,
P. Odier, L. Soby, R. Steerenberg, J. Emery, E. Calvo,
A. Guerrero, H. Damerau, R. Steinhagen, S. Hancock,
G. Valentino, ...

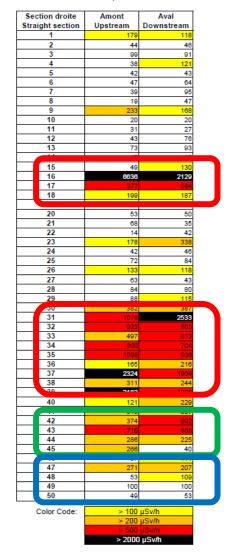
Outline

Performance of

- BLM Beam Loss Measurements
- WS Wire Scanner
- Synchrotron Light Monitor
- IPM Ionization Profile Monitor
- BCT Beam Current Transformer
- BPM Beam Position Monitors
- WCM Wall Current Monitors
- ?Halo Measurements?

In the

- PS
- PSB
- SPS
- LHC (sometimes shown for comparison)
- For new or updated instruments: target parameters given in green color


Space Charge Workshop, CERN

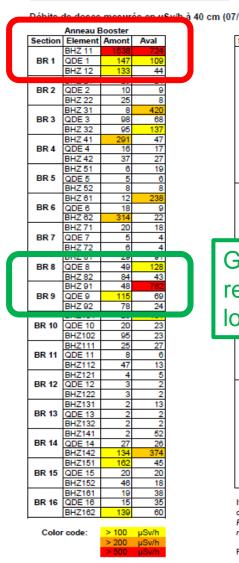
Beam Loss and Measurement

2012 PS Ring Radiation Survey

PS Ring inside Radiation Survey 2012

Débits de dose en µSv/h à 40 cm de la ligne de faisoeau côté intérieur (18/12/2012, ~32h après arrêt faisoeau) Dose rates in µSv/h at 40 cm of the beam line inside of the ring (18/12/2012, ~32h after beam stop)

Continu dunito	Amont	Aval		
Section droite	Amont			
Straight section 51	Upstream	Downstream		
	46	32		
52	41	40		
53	51	54		
54	17	138		
55	107	95		
		0000		
57	814	2203		
59	108	70		
60	116	107		
61	138	133		
62	45	48		
63	173	134		
64	35	37		
65	88	146		
66	31	25		
67	75	42		
68	20	42		
69	45	67		
70	40	24		
71	32	17		
72	26	25		
73	20	60		
74	31	45		
75	1955	1246		
76	187	69		
77	87	96		
78	22	22		
79	34	41		
80	7	8		
81	6	5		
82	23	120		
83	60	69		
84	45	46		
85	79	95		
86	18	46		
87	111	59		
88	19	40		
89	30	40		
90	18	18		
91	36	30		
92	5	17		
93	16	47		
94	9	7		
95	36	38		
96		4		
97	27	25		
98	12	11		
99	79	63		
100	10	40		
If you have any quest protection, please cal	ions concerning r	adiation		
Pour tout renseignement concernant la				


radioprotection, veuillez contacter: Phone: 72504

L. Bruno et al., *Final Report of the PS Radiation Working Group*, CERN-ATS-2011-007

R. Steerenberg et al., Func. Spec: PS Beam Loss Monitor System renovation and upgrade (in work)

Typical PSB activation pattern from 2010

/12/20: Secti	Inj	ec	tic	n
L	QNO30	12	80	
	QNO40	200	194	
	DIS	322	416	
	DIS.Pb	365	34	
BI	SMV	170	274	
DI	BVT	\langle	97	
	QNO50	\langle	64	
	QNO60	\sim	64	
	UMA40	\sim	38	
	TRA20	\langle	60	
	UMA50	\sim	61	
	UMA50+	\sim	43	
	BVT10	86	63	
	SMV10	42	87	
	QNO10	108		
	QNO20	187	75	
	KFA10	46	22	
	DVT30		15	

Global aperture restriction: BR8 loss peak BR9

BTM	SGV1	6	\sim
	SGV2	5	\sim
	SGV3	6	
	DUMP	6	34
	BVT101	19	7
	QDE104	6	6
	QFO108	4	3
	QDE113	2	2
	BVT116	2	2
BTY	QFO119	2	3
	QDE120	3	2
	QFO122	2	2
	QFO148	0	1
	QDE151	8	5
	QFO153	4	3

If you have any further questions, please call the radiation protection service: Pour tout renseignement concernant la radioprotection, veuillez contacter:

Phone: 72504

PSB activation 2012

Débits de doses mesurés le 18/12/2012

	Ann	eau Boost	ter	
	47		- O- //-	
	nité	-	µSv/h	
Dis	tance	2 m	40	
	BHZ 11	150	1767	761
BR 1	QDE 1	58	199	138
	BHZ 12	34	169	79
BR 2	QDE 2	12	20	
BR 2		12		10
	BHZ 22	9	61	8
	BHZ 31		19	634
BR 3	QDE 3	38	155	98
	BHZ 32	151	162	104
	BHZ 41 ODE 4	17	172	45
BR 4		17	8	-
	BHZ 42	6	89	25
	BHZ 51		6	115
BR 5	QDE 5	7	22	21
	BHZ 52	4	24	6
	BHZ 61	4.0	17	248
BR 6	QDE 6	12	24	13
	BHZ 62	8	417	28
	BHZ 71	-	22	24
BR 7	QDE 7	6	13	9
	BHZ 72	4	9	5
	BHZ 81		29	60
BR 8	QDE 8	29	51	73
	BHZ 82	24	53	37
	BHZ 91		37	463
BR 9	QDE 9	25	60	35
	BHZ 92	8	43	14
	BHZ101	-	13	193
BR 10	QDE 10	10	19	23
	BHZ102	21	166	0
	BHZ111		34	17
BR 11	QDE 11	5	7	6
	BHZ112	8	104	24
	BHZ121		11	3
BR 12	QDE 12	1	3	2
	BHZ122	1	2	2
	BHZ131		2	3
BR 13	QDE 13	1	3	2
		2		
	BHZ141		3	147
BR 14	QDE 14	28	69	52
	BHZ142	158	107	755
	BHZ151		212	53
	QDE 15	21	27	25
BR 15				
BR 15		20		-
	BHZ161		30	35
BR 15 BR 16	BHZ161 QDE 16 BHZ162	20 21 150	30 17 155	35 43 96

Color code:

> 100 uSv/h

> 200 µSv/h

> 2000

Ligne Element Amont Aval Unité uSv/h Distance 40 cm UMA20 7 8 DVT30 QNO30 31 239 QNO40 340 DIS 247 DIS.Pb 128 78 BI SMV 266 416 BVT 147 QNO50 66 QNO60 68 UMA40 44 72 TRA20 JMA50 64 BVT10 141 81 SMV10 87 174 QNO10 244 QNO20 278 113 KFA10 68 34 DVT30 34 SMV20 292 235 BT QNO30 116 TRA 150 218 119 141 63 52 24 22 16 16 10 MTV10 16 BHZ10 16 10 BHZ10 50 27 QNO10 15 BTM QNO20 15 14 SGV1 9 SGV2 8 SGV3 9 DUMP BVT101 16 5 QDE104 6 6 QFO108 5 6 QDE113 3 3 BTY BVT116 3 2 QFO119 1 1 QDE120 1 1 QFO122 1 1 QFO148 1 1 QDE151 1 1 QFO153 1 1 If you have any questions concerning radiation protection, please call: Pour tout renseignement concernant la

Autres lignes

radioprotection, veuillez contacter:

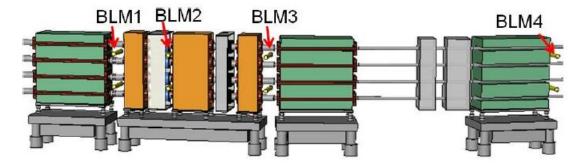
Phone: 72504

Space Charge Workshop, CERN

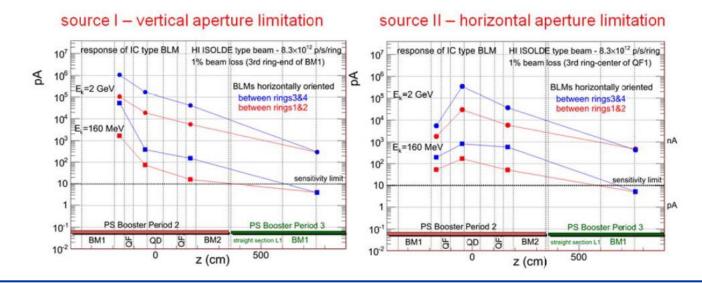
Eva Barbara Holzer

Beam Loss Monitoring – PSB

- Monitor type ACEM (PSB and PS)
- No logging
- Signal per lost proton
 - Strongly depends on beam energy
 - Signal not converted to absolute units (like Gy/sec, lost protons/sec)
 - Integral over cycle OR ms-sampling
- 2 rings share the same monitors (→ ring 1/2 and ring 3/4 cannot be distinguished)
- 16 longitudinal positions at vertical aperture restrictions (one per section)
- New system (Ionization Chambers, IC, and new readout):
 - LS1: Additional 16x2 ICs (LHC type) at the same locations as the ACEMs
 - LS2 (LINAC4 connection): 16x2 Flat ICs at horizontal aperture restrictions – 5 times less sensitive


Beam Loss Monitoring – PSB cont.

- New BLM system with ionization chambers → will allow to display losses in Gy/s
- Extensive simulation studies (CERN-ATS-Note-2012-096 TECH) will allow to calculate the number of lost protons (guess of the achievable precision: factor 2-5).
- Simulated proton beam energies Ek=160 MeV (future injection energy with LINAC4), 1.4 GeV (present extraction energy) and 2 GeV (future extraction energy) at vertical and horizontal aperture restrictions
- Lower measurement limit approximation in 2 µs (shortest integration interval with a measurement limit 31nA) for losses at a single location:
 - 160 MeV (V / H loss): 6E4 / 1E6 protons
 - 2 GeV (V / H loss): 6E3 / 6E4 protons


7

PSB BLM simulation studies Sanja Damjanovic

- Currently installed locations: "BLM1" and "BLM4"
- Additional location for horizontal loss (LS2): "BLM2"

1% beam loss of a HI ISOLDE type beam (8.3E12 protons):

Space Charge Workshop, CERN

Eva Barbara Holzer

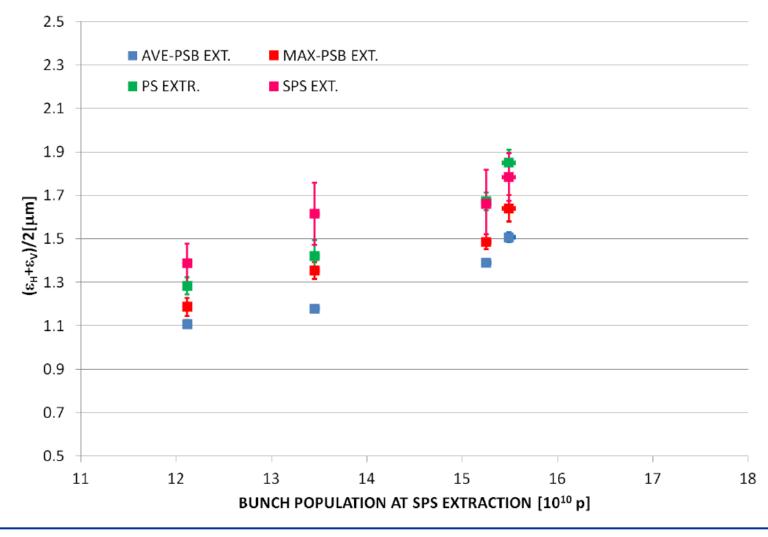
8

New Readout system for injector BLM (LINAC4, PSB, PS, SPS)

- Generic, highly configurable, able to accept several detector types
- Integration time 2µs, plus moving sums up to a full cycle
- Dynamic range = 10¹¹ for integration times >=10ms: 10pA to 200mA
- Comparison with predefined thresholds
 - Machine protection with hardware implementation
 - Limit radiation levels with software implementation
- Online display and logging of max losses
- Capture data with consecutive loss integrals
- Additional: possibility of high time resolution measurements with diamond detectors (time resolution ~ns range) at few selected locations
- Timescale:
 - LINAC2 and PSB: after LS1
 - PS and SPS: LS2

Transverse Profile

Transverse Profile Measurements – Wire Scanners

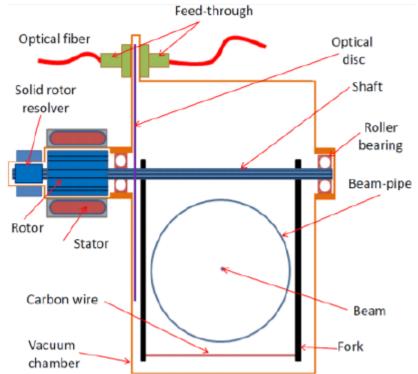

	Wire speed	Number of equipment	Dynamic range	Absolute accuracy on emittance	spatial resoluti on	Meas. range in ∆x and ∆y	Bunch selection
PSB	rotational 15 m/s	1 H / ring 1 V / ring	100	20%	200µm	calibrated to +/- 5 cm	Could be made b-p-b?
PS	rotational 15 m/s	3 H 2 V	100	20%	200µm	calibrated to +/- 5 cm	Could be made b-p-b?
SPS	rotational 6 m/s	3 H 3 V	100	20%	200µm	+/- 5 cm	Bunch-per- bunch
	Linear 1/0.6 m/s	2 H 2 V	100	20%	50µm	~ +/- 4 cm	Bunch-per- bunch
Future SPS 2014	rot. 20 m/s	1 V	10 ⁴ (spec)	< 10%	<10 µm	+/- 4 cm (full aperture)	Bunch-per- bunch
LHC	linear 1 m/s	1 H / ring 1 V / ring + 2 dev./ring	100	2013: 10- 50% 2014: 10%	50µm	Full aperture	Bunch-per- bunch

It typically takes a few 100 turns for one profile (e.g. PSB ~600 turns)

LS1: systematic simulation study to improve WS accuracy

WS measurement across the accelerator chain

 G. Arduini: "Emittance vs. intensity along the chain", LMC Meeting 12 October 2011



Space Charge Workshop, CERN

Eva Barbara Holzer

New Wire Scanner Development

- Design goals:
 - Spatial resolution of few µm (using high resolution angular position sensor)
 - Dynamic range: 10⁴
 - Usage of sensor with large dynamic (diamond)
 - Automatic electronic switching of gain ranges
 - Minimize fork and wire deformations
 - Study of dynamic behavior of fork/wire system
 - Vibration mode optimized acceleration profile

Transverse Profile Measurements - others

 Relative measurements, they need to be calibrated against the wire scanners

		Numb er of equip ment	Dynamic range	Absolute accuracy on beam size measurement (after cross calibration)	relative accuracy emittance / beam size	spatial resoluti on	measurem ent rate	Bunch selection
SPS Synch. 2014 (refurbis hed)	Only above 300Ge V	1	200 or 10 ⁵ by changing attenuati on	30% on emittance – hope to improve	10%/5% (same setting, 2 bunches in the machine for example)	~50µm (expecte d)	10Hz (flexile gating time width)	72 bunches – 1 PS batch
LHC Synchrot ron Light	BSRT	1 / beam	200 or 10 ⁵ by changing attenuati on	30% on emittance – hope to improve	10%/5%	50µm	10Hz (flexile gating time width)	Bunch- per-bunch
SPS 2015	IPM	2: H,V	10 ³	20%	5% / 2.5%	100µm	10 bunches in 0.1 s	Sum of all beam,
LHC 2015	IPM	2 / beam	10 ³	20%	5% / 2.5%	100µm	10 bunches in 0.1 s	maybe indiv. bunches)

Transverse Profile Measurement cont.

- G. Arduini et al., *Measurement of the Transverse Beam Distribution in the LHC Injectors (Func. Spec.).* EDMS 772786. Extensive document including:
 - Measurement techniques
 - Measurement devices (specifications, parameters)
 - Parameters of beams and optics at location of devices
- Timescale for new design WS:
 - PSB: requested, no installation date confirmed
 - PS: requested, planned for LS2
 - SPS: requested, one test system installed LS1, full installation not before LS2
 - LHC: new system not (yet) requested
- Possibility of a PS IPM being investigated (presentation by M. Sapinski; workshop for non-invasive beam size measurement 16. April 2013, CERN)

Intensity Measurement

Fast Beam Current Transformers - FBCT

	State of the Art	PSB	NEW PS, LS1	SPS	LHC
Number of instruments		1	1 (to be replaced LS1)	1 (replaced later than LS1)	2 / ring
Absolute accuracy	1%	ion, used າ and RF	1%	5% (bunch position dependence and tail effects)	1% + 1% per mm of beam displacement
Reproducibility (typically averaged over several hundreds of turns)	0.1%	No precise calibration, used only for observation and RF synchronisation	0.1%	~1%	0.5%
Dynamic range	10 ³ – 10 ⁴	precise y for obs ichronisa	5 10 ³	5 10 ³	5 10 ³
		No Vlno syn	Bunch-by- bunch	Bunch-by- bunch	Bunch-by- bunch

 In addition: many FBCT replaced in transfer lines during LS1 (TT2, PSB extraction, ISOLDE line)

DC Beam Current Transformers

	PSB	PS	SPS	LHC
Number of instruments	1 / ring	1	2	2 / ring
Absolute accuracy	1%	1%	1%	0.2%
Noise floor	50µA	50µA	2 μΑ	2 μΑ
Dynamic range	10 ⁴ (1 10 ⁹ – 1.4 10 ¹³ p)	5 10 ⁴ (1 10 ⁹ - 5 10 ¹³ p)	10 ⁵ (1 10 ⁹ - 1.5 10 ¹⁴ p)	10 ⁶ (µA – 1A)

Orbit Measurement

BPMs for orbit measurement

	PSB	NEW PSB – all 4 rings after LINAC4 connection, for >1E11 ppb	PS	SPS	LHC
Design	Cylindrical (dual plane)	Stay the same	Shoebox (dual plane)	Mostly shoebox (single plane)	Button (dual plane)
Number of BPMs	16/ring	16/ring	40 43 (LS1)	~230	~1100 2 per cell per ring
Turn-by turn	no	yes	yes	yes	yes
Position res.	0.1 mm	0.2 mm (better when averaging turns)	0.2 mm (better when averaging turns)	0.5/1mm for high/low intensity bunches	Arc: 5-10µm (nom. bunches, averaging turns), 100µm (very low intensity) IR: ~50µm nom. bunches
Accurac y of offset corr.	No offset correction	El. offset corr. can be applied; Mech. offset not well known	~0.1 mm (el. and mech.)	~0.1mm mech. ~0.5mm el. (radiation ageing of cables)	0.1mm mech. <0.2 mm el.

 Current PSB system: Cannot resolve individual bunches nor rapid beam movement (4MHz acquisition system bandwidth)

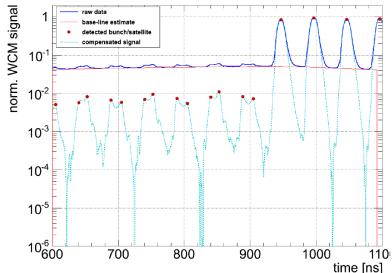
BPMs for orbit measurement cont.

	PSB	NEW PSB – all 4 rings after LINAC4 connection for >1E11 ppb	PS	SPS	LHC
Design	Cylindrical el.stat.	Stay the same	Shoebox el.stat.	Mostly shoebox	button
Linearity corrections	No (mech. design linear)	No (mech. design linear)	No (mech. design linear)	No; only BPCE (large aperture at extraction regions)	Yes (no cross terms)
Linearity error	?	?	1% over +/-40mm	BPCE: 1% over +/-80mm	~1% over 1/3 of the aperture

- Linearity corrections: 5th order polynomial (for LHC: cross terms are calculated, but not yet applied)
- Linearity correction of the electronic: simulated and tested in the lab
- Linearity correction due to the BPM geometry: simulated using CST particle studio and tested with beam

Longitudinal

Longitudinal Profile with Wall Current Monitor, WCM


 Resolution and error depends on: bunch shape, bunch length, beam energy, leading or trailing tail, and on the system (bandwidth, readout resolution, cable reflections, whether the WCM is used as dedicated device)

 \rightarrow numbers are only guidance levels for e.g. LHC beams

- SPS: Readout by 8 bit scope, resolution frequency dependent (~ 5 bit for higher frequencies):
 - 1 10 turn measurements: bunch shape changes quickly
 - Resolution of tails: 1-3% of the peak value
 - Systematic error (pick-up response): percent region (same order of magnitude as the resolution)
- PS: Readout by 8 bit scope
 - Extraction 4ns beam: similar to SPS

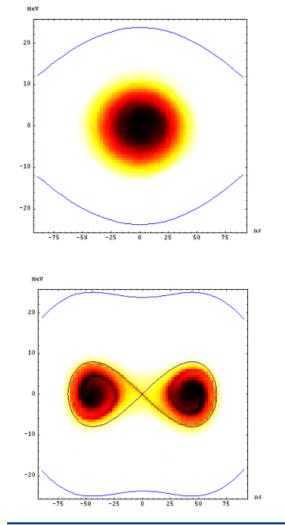
Precision on satellite bunch measurements

- G. Papotti et al., The SPS Beam quality monitor, from design to operation, IPAC 11 :
 - Automatized satellite bunch detection algorithms reliably detects signals that are about 3% of the main bunches, better precision can be reached by hardware improvements
- R. Steinhagen et al., Wall-Current-Monitor based ghost and satellite bunch detection in the CERN PS and LHC accelerators, BIW 12:
 - Investigations and prove of principle in PS and LHC for WCM based system:
 - Measure ghost and satellite bunches with a resolution of 10⁻⁴ with respect to the main bunches
 - Systematic error < 10⁻³
 - Precision measurement of the steady-state bunch profile

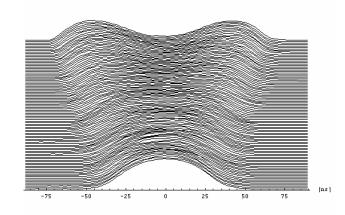
Literature Longitudinal courtesy T. Bohl

BQM:

- G. Papotti et al. The SPS Beam quality monitor, from design to operation. International Particle Accelerator Conference, 2011. CERN-ATS-2011-219.
- G. Papotti. SPS Beam Quality Monitor. Status and experience. MSWG 2011-04-29, presentation.
- G. Papotti. SPS Beam Quality Monitor. Update on the project. MSWG 2009-09-04.
- G. Papotti. Fast (and reliable) detection of longitudinal instabilities. CERN/GSI Meeting on Longitudinal Beam Dynamics and RF Manipulations, September 2009.
- G. Papotti. SPS Beam Quality Monitor. Machine Studies Working Group (MSWG) Meeting 2009-04-24.


APWL WCM:

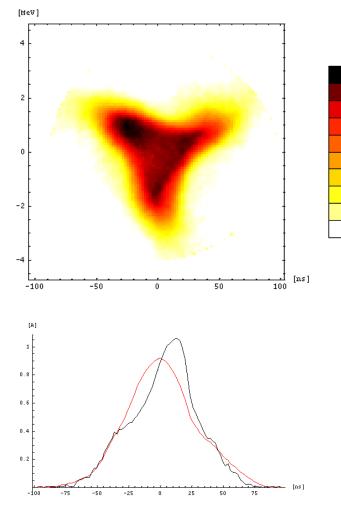
- T. Bohl, J.F. Malo. The APWL Wideband Wall Current Monitor. CERN-BE-2009-006.
 Ghosts/satellites:
- R.J. Steinhagen. Wall-Current-Monitor based Ghost and Satellite Bunch Detection in the CERN PS and LHC Accelerators. 2012 Beam Instrumentation Workshop, CERN-ATS-2012-151.
- R. Steinhagen et al, WCM-based Satellite Measurements during the November'12 VdM scans, LHC Luminosity Calibration and Monitoring Working Group Meeting.


Longitudinal Tomography

Longitudinal Tomography (S. Hancock, M. Lindroos et al.)

- Available in: PSB, PS, LEIR, AD
- http://tomograp.web.cern.ch/tomograp/

Bunch splitting at 3.5GeV/c in the CERN PS (1999/06/03). The measured data span 10ms.



Longitudinal Tomography (S. Hancock, M. Lindroos et al.)

[e/eVs]

 69×10^{32}

- Available in: PSB, PS, LEIR, AD
- http://tomograp.web.cern.ch/tomograp/

"Longitudinal instability towards the end of acceleration in the PSB (2000/11/23). The projection (in red) of this distribution shows atypically poor convergence towards the corresponding measured profile (in black). The reconstruction includes none of the terms driving the instability, so it is not surprising that tomography cannot reproduce the fine detail. Nevertheless, it is a testament to the robustness of the method that the underlying nature of the instability is revealed so unequivocally as sextupolar."

Transverse Halo Measurements

Transvers Halo Measurement

- Beam tails (10⁻² –10⁻³) are just within range of standard profile measurements
- Halo (< 10⁻⁴): need very high dynamic range >10⁵
 Methods:
- Wire scanners and scrapers (linear machine) \rightarrow slow
 - A Browman et al. PAC 2003: dynamic range of 10⁵
 - A.P Freyberger, Jefferson Lab, PAC'03, DIPAC'05: dynamic range of 10⁸
- Optical Methods → faster
 - Light generated by synchrotron radiation or screens
 - Large dynamic range readout
 - CID (Charge Injection Device) cameras with RAI (random access integration) mode (automatically adjusted integration time for each pixel): dynamic range of up to 10⁶
 - Micro Mirror Arrays (adaptive masking method), HB2012, Hao Dai Zhang et al.
 - Blocking the core with coronagraph

Transvers Halo Measurement cont.

Synchrotron: collimator or scraper or wire in the halo \rightarrow

- Measure (precise relative measurement) and destroy the halo at the same time
- e.g. LHC, HERA collimators, SPS scrapers, former CERN Beamscope (orbit bump and stationary target)
 - G. Valentino et al., Beam diffusion measurements using collimator scans in the LH, Phys. Rev. ST Accel. Beams 16 (2013).
 - F. Burkart, *Beam Loss and Beam Shape at the LHC Collimators*, CERN-THESIS-2012-046.
 - K.-H. Mess, M. Seidel, Collimators as diagnostic tools in the proton machine of HERA, Nucl. Instrum. Methods Phys. Res., Sect. A351, 279 (1994).
 - M. Seidel, M. Seidel, DESY Report No. 94-103, 1994.
- Further Reading on Halo Measurements:
 - Kay Wittenburg, Beam Halo and Bunch Purity Monitoring, CAS on beam Diagnostics, Dourdan, CERN-2009-005 (2009).
 - 29th ICFA Advanced Beam Dynamics Workshop on Beam Halo Dynamics, Diagnostics, and Collimation, HALO'03, Montauk, Long Island, New York.
 - Proceedings ICFA workshops: HB2004, Bensheim, Germany; HB2006, Tsukuba, Japan.

Summary of scheduled updates (PSB, PS, SPS, LHC)

LS1:

PSB	BLM part1
SPS	WS, IPM
LHC	IPM

LS2:

PSB	BLM part2, BPM
PS	BLM, Fast BCT, WS
SPS	BLM, WS
LHC	?WS?

END

CERN: Transverse Size

OTR & Scintillation screens

- Scintillation typically for set-up (thick screens -> emittance blow-up) or for low energy where OTR cannot be used for hadrons. Meeting last year at GSI to look at resolution possible with various screen materials. Not obvious to find right material for particular beam conditions. <u>http://wwwbd.gsi.de/ssabd/home.htm</u>
- OTR. Good for high energy hadron beam measurements. Little emittance blow-up. Typically used in injection/ejection lines for 3 screen emittance measurement. Very thin foils Ti or C used can withstand fairly high beam powers.

Wirescanners

- Reference for all other beam size measurements in circular machines.
- Issues with sublimation of wires for high brightness (low emittance & high charge) beams.
- Limited by number of points during scan for small beams. Increasing scan speed allows higher intensity to be scanned but reduces # points.
 Decreasing speed gives nice profiles (many points) but severely limits beam intensity that can be scanned

Transverse Size cont.

- Rest Gas ionisation monitors
 - Installed in SPS & LHC
 - Needs moderate pressure bump
 - Issues to understand size evolution during ramp. Space charge, electron/ion gyration radius, electron cloud.

• BSRT

- Only above 400GeV for protons SPS at extraction & LHC (with dedicated undulator for low energy)
- Only with many bunches at 450GeV LHC injection energy for lead ions
- Needs cross calibration and very good knowledge of optics & emission scenarios for absolute calibration
- Good for relative bunch by bunch size measurements. In LHC now capable of acquiring profiles at 20Hz -> for 1350 bunches, averaging over 5 images, manage to scan all bunches in ~5mins.

Longitudinal Distribution & Transverse Position

- Wall current monitors. Frequency up to GHz to look at longitudinal structure. Correction of pick-up & cable response required to obtain sufficient dynamic range to allow detection at below the 1% level. Limited by acquisition electronic dynamic range (typically 8bit ADC for these frequencies). Also play tricks with clamping circuits to look only at satellite populations (i.e. ignoring the core of the bunch) recovery time from clamping fast enough to look even directly after a main bunch.
- Stripline pick-ups. Used to look at intra-bunch transverse instabilities (head-tail etc). Bandwidth up to few GHz.
- LDM used in LHC. Single photon detection. Uses statistics & correction of dead-time & after-pulsing to give near limitless dynamic range. Resolution basically determined by the time you're willing to wait and dark current of avalanche photodiode detector. Temporal resolution some 50ps.

Phase Space Reconstruction

Transverse Phase space reconstruction

Turn by turn BPM data from 2 BPMs with 90 phase separation. Used in PS for multi-turn extraction optimisation, where the main bunch is split into a core with 4 islands which all have different trajectories. - Belleman

Longitudinal

Tomography using data from wall current monitors is used to look at full longitudinal phase space in the PS – basically reconstructing slices of the longitudinal profile over several synchrotron periods. This is a very useful diagnostic for the bunch splitting that is employed in the PS. Hancock

BLM, WS, BSRT, LDM

	Dynamic range	accuracy	Temp. resoluti on
BLM: Ionization chambers electronics	2 x 10 ⁵ in 40 µs (10 ⁶ under developement: 1nA − 1mA) 10^8 in ≥ 1.3 s	10% on measurement of ionisation; 50 -200% on the number of lost protons	100us
Diamond BLM	Electronics: 10 ³ ; Diamond: 10 ⁹ DC, 1pA – 1mA	n.a.	Few ns

	Dynamic range	accuracy	spatial resolution	temporal resolution
WS	100	5-10%	50um linear WS LHC/SPS 200um rot. WS SPS/PS/PSB	
BSRT	200 10^5 by changing attenuation	30%	50um 10% on emittance (?)	
LDM	At LHC at least 10 ³ 10 ³ . Theoretically 10 ⁴ - 10 ⁵ ; but limited by deadtime and afterpulse.			50 ps