Measurement of ϕ_s at LHCb

Robert Currie, Edinburgh University

THE UNIVERSITY of EDINBURGH on behalf of: LHCb Collaboration

2013 Phenomenology Symposium May 6-8th

Results presented in this talk:

• $B^0_s \rightarrow J/\psi \ K^+K^-$ and $B^0_s \rightarrow J/\psi \ \pi^+\pi^-$ (Commonly referred to as $B^0_s \rightarrow J/\psi \ \phi$ and $B^0_s \rightarrow J/\psi \ f^0$ Analyses)

"Measurement of ${\cal CP}$ violation and the B^0_s meson decay width difference with $B^0_s \to J/\psi~K^+K^-$ and $B^0_s \to J/\psi~\pi^+\pi^-$ decays" arXiv:1304.2600 Submitted to Phys. Rev. D

• $B_s^0 \rightarrow \varphi \varphi$

"First measurement of the ${\cal CP}$ -violating phase in $B^0_s \to \varphi \varphi$ decays" arXiv:1303.7125 Submitted to Phys. Rev. Lett.

LHCb Detector

Definition of $\phi_{\rm s}$

 ϕ_{s} is defined as the phase for $C\mathcal{P}$ -violation between mixing(ϕ_{M}) and decay(ϕ_{D}):

$$\phi_{\rm s}=\phi_{\rm M}-2\phi_{\rm D}$$

New physics could modify box diagrams and alter $\phi_{
m M}.$

${\rm B}^0_{\rm s} ightarrow {\rm J}\!/\psi \; {\rm K}^+{\rm K}^-$ Phenomenology

In Standard Model (ignoring penguin pollution)

 ${
m B}^0_{
m s} \to {
m J}/\psi~{
m K}^+{
m K}^-$ and ${
m B}^0_{
m s} \to {
m J}/\psi~\pi^+\pi^-$ proceed via $b \to c \overline{c} s$ transition.

Decay dominated by tree level diagram:

$$\phi_{\mathsf{s}} = -2\beta_{\mathsf{s}}$$
$$= -2\arg\left(\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right)$$

$$\approx -0.0364 \pm 0.0016 \text{ rad}$$
arXiv 1106.4041

$$B_s^0 \bigcirc b \\ S & W^+ \\ S \\ S & h^+h^-$$

 $\mathsf{Intro} \quad \mathbf{B}^0_s \to J/\psi \; \mathbf{K^+K^-} \; \mathsf{Analysis} \quad \mathbf{B}^0_s \to J/\psi \; \mathbf{K^+K^-} \; \mathsf{Results} \quad \mathbf{B}^0_s \to \varphi \; \varphi \; \varphi \; \mathsf{Analysis} \quad \mathbf{B}^0_s \to \varphi \; \varphi \; \varphi \; \mathsf{Results} \quad \mathsf{Summary} \; \mathsf{Analysis} \; = \mathsf{B}^0_s \to \varphi \; \varphi \; \mathsf{Analysis} \; \; \mathsf{Anal$

Measurement of ϕ_s at LHCb 2013 Phenomenology Symposium

Fitting for $\phi_{\rm s}$

Terms sensitive to ϕ_s in the PDF take the form:

 $D_{\text{tagging}}(\omega_{\text{mistag}})D_{\text{time-res}}(\sigma_t)\sin(\phi_s)\sin(\Delta m t)$

Oscillations in numbers of tagged events with time as below:

Time Resolution

Time Resolution (σ_t) calculated from fit to prompt J/ ψ background. $\sigma_t = 45$ fs for $B_s^0 \rightarrow J/\psi K^+K^-$.

Peak at t=0 composed of real J/ ψ from IP + 2 random tracks, passing all of the selection cuts.

Flavour Tagging at Production (t=0)

To fit for ϕ_s we need to determine the flavour of B_s^0 meson at production. i.e. Identify whether the signal meson was B_s^0 or $\overline{B_s^0}$ at t=0.

Flavour tagging at LHCb is discussed in more detail in a talk in Tuesday's parallel session by Katharina Kreplin.

 $\begin{array}{l} \mbox{For } B^0_s \rightarrow J/\psi \ K^+K^- \mbox{, the effective tagging efficiency is:} \\ \epsilon_{tag} \mathcal{D}^2 = (3.13 \pm 0.12 \pm 0.20) \ \% \qquad \mbox{Where: } \mathcal{D} = (1 - 2\omega_{mistag}) \end{array}$

This gives us the same tagging power as a dataset containing $\epsilon_{tag} D^2 \times N$ perfectly tagged events.

Angular Definitions

Both analyses have final states composed of $\mathcal{CP}\text{-}\mathsf{Even}$ and $\mathcal{CP}\text{-}\mathsf{Odd}$ components.

 \Rightarrow full angular analysis for both $B^0_s \! \to \! \varphi \varphi$ and $B^0_s \! \to \! J \! / \! \psi \, K^+ K^-$ using the Helicity basis.

Projections

 $\text{Intro} \quad \operatorname{B}^0_{\operatorname{S}} \to \operatorname{J/\psi} \operatorname{K^+K^-} \text{Analysis} \quad \operatorname{B}^0_{\operatorname{S}} \to \operatorname{J/\psi} \operatorname{K^+K^-} \text{Results} \quad \operatorname{B}^0_{\operatorname{S}} \to \varphi \ \varphi \ \text{Analysis} \quad \operatorname{B}^0_{\operatorname{S}} \to \varphi \ \varphi \ \text{Results} \quad \text{Summary} \ \text{Summary} \ \text{Summary} \ \text{Summary} \ \text{Summary} \ \text{Results} \ \text{Summary} \ \text{Results} \ \text{Summary} \ \text{Results} \ \text{Results} \ \text{Summary} \ \text{Results} \ \text{Res$

${ m B}^0_{ m s} ightarrow { m J}\!/\!\psi \; { m K}^+ { m K}^-$ Results

 6σ significance for $\Delta\Gamma \neq 0!$

${ m B}^0_{ m s} ightarrow { m J}\!/\psi \; \pi^+\pi^-$ Data

 $\begin{array}{l} \mbox{Original $B^0_s \rightarrow J/\psi$ $\pi^+\pi^-$ analysis} \\ \mbox{previously published} \\ \mbox{arXiv:1204.5675}. \end{array}$

Decay mode determined to be $> 97.7\% \ CP$ -Odd. (\Rightarrow no need for angular analysis)

Analysis has been updated and latest tagging information is used.

pprox 7,400 signal events

 $\mathsf{Intro} \quad \mathsf{B}^0_s \to J/\psi \ \mathsf{K}^+\mathsf{K}^- \ \mathsf{Analysis} \quad \mathsf{B}^0_s \to J/\psi \ \mathsf{K}^+\mathsf{K}^- \ \mathsf{Results} \quad \mathsf{B}^0_s \to \varphi \ \varphi \ \mathsf{Analysis} \quad \mathsf{B}^0_s \to \varphi \ \varphi \ \mathsf{Results} \ \mathsf{Summary} \ \mathsf{Summary} \ \mathsf{Results} \ \mathsf{Summary} \ \mathsf{Results} \ \mathsf{Res$

$\rm B^0_s \to J\!/\psi \; \rm K^+\rm K^- + \; B^0_s \to J\!/\psi \; \pi^+\pi^-$ Combined Results

Combined result gives the most precise measurements of:

ϕ_s	=	0.01	±	0.07	(stat)	±	0.01	(syst)	rad,
Γ_s	=	0.661	\pm	0.004	(stat)	\pm	0.006	(syst)	ps^{-1} ,
$\Delta\Gamma_s$	=	0.106	\pm	0.011	(stat)	\pm	0.007	(syst)	ps^{-1} .

Measurement of ϕ_s at LHCb 2013 Phenomenology Symposium

${\rm B}^0_{\rm s} ightarrow \varphi \; \varphi \; \varphi$ Phenomenology

Decay proceeds via $b \rightarrow s\overline{s}s$ transition. Dominated by penguin diagram:

Clean Signal in purely hadronic channel:

Time resolution in this analysis is $\sigma_t = 40 \text{ fs}$. Effective tagging power of $\epsilon_{\text{tag}} D^2 = (3.29 \pm 0.48) \%$.

Projections

Fit Results for ϕ_s

Small Dataset \Rightarrow Feldman-Cousins analysis provides coverage corrected 68% confidence limits (inc. systematics) of:

$$\phi_{\rm s} = [-2.46, -0.76] \, {\rm rad}$$

 $\mathsf{Intro} \quad B^0_s \to J/\psi \ \mathrm{K^+K^-} \ \mathsf{Analysis} \quad B^0_s \to J/\psi \ \mathrm{K^+K^-} \ \mathsf{Results} \quad B^0_s \to \varphi \ \varphi \ \mathsf{Analysis} \quad B^0_s \to \varphi \ \varphi \ \mathsf{Results} \ \mathsf{Summary}$

Summary

- Most precise measurement of ϕ_s in $B_s^0 \rightarrow J/\psi \ K^+K^-$ and $B_s^0 \rightarrow J/\psi \ \pi^+\pi^-$ analysis. $\phi_s = 0.01 \pm 0.07 \text{ (stat)} \pm 0.01 \text{ (syst) rad},$ $\Gamma_s = 0.661 \pm 0.004 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1},$ $\Delta\Gamma_s = 0.106 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst) ps}^{-1}.$
- **First** measurement of ϕ_s in $B_s^0 \to \varphi \varphi$.

 $\phi_{\sf s} = [-2.46, -0.76]$ rad

• **200% more data** recorded in 2012 yet to analyse!

 $\text{Intro} \quad B^0_s \to J/\psi \ K^+K^- \text{ Analysis } \quad B^0_s \to J/\psi \ K^+K^- \text{ Results } \quad B^0_s \to \varphi \ \varphi \text{ Analysis } \quad B^0_s \to \varphi \ \varphi \text{ Results } \text{ Summary } \mathbb{S}^{-1}(\varphi) \to \mathbb{S}^{-1}(\varphi) = \mathbb{S}^{-1}(\varphi) + \mathbb{S}^{-1}(\varphi) +$

Backups

Measurement of ϕ_s at LHCb 2013 Phenomenology Symposium

For $B_s^0 \rightarrow J/\psi K^+K^-$ the Effective tagging Efficiency is: $\langle D^2 \rangle = (3.13 \pm 0.12 \pm 0.20) \%$

Where: $\mathcal{D} = (1 - 2\omega_{\text{mistag}})$

For $B_s^0 \rightarrow J/\psi \pi^+\pi^-$ the Effective tagging Efficiency is: $\langle D^2 \rangle = (3.37 \pm 0.12 \pm 0.27) \%$

Both analyses use Opposite and Same Side Taggers

Measurement of ϕ_s at LHCb 2013 Phenomenology Symposium

Δ LL function for Δ m_s

Measurement of ϕ_s at LHCb

Fitting for Δm_s in ${\rm B}^0_s \to J/\psi\,\varphi$ gives a value for which is compatible with external measurements. Evidence that flavour tagging is working and that we understand our time resolution model.

21/18

$\text{Full } \mathrm{B}^0_\mathrm{s} \to \mathrm{J}\!/\!\psi \; \mathrm{K}^+\mathrm{K}^- \, \text{PDF}$

$$\frac{d^{4}\Gamma\left(\mathrm{B_{s}^{0}}\rightarrow\mathrm{J/\psi}\ \mathrm{K^{+}K^{-}}\right)}{dtd\Omega}\propto\sum_{k=1}^{10}f_{k}\left(\Omega\right)h_{k}\left(t\right)$$

$$h_{k}(t) = N_{k}e^{\Gamma_{s}t}\left[a_{k}\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + b_{k}\sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + c_{k}\cos\left(\Delta m_{s}t\right) + d_{k}\sin\left(\Delta m_{s}t\right)\right]$$

k	$f(\theta_{\mu}, \theta_{K}, \phi_{h})$	N _k	ak	b _k	Ck	d_k
1	$2 \cos^2 \theta_K \sin^2 \theta_\mu$	$ A_0(0) ^2$	1	D	С	-S
2	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \cos^2 \phi_h\right)$	$ A_{\parallel}(0) ^{2}$	1	D	С	-S
3	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \sin^2 \phi_h\right)$	$ A_{\perp}(0) ^2$	1	-D	С	S
4	$\sin^2 \theta_K \sin^2 \theta_\mu \sin 2\phi_h$	$ A_{\parallel}(0)A_{\perp}(0) $	$C \sin (\delta_{\perp} - \delta_{\parallel})$	$S \cos (\delta_{\perp} - \delta_{\parallel})$	$sin (\delta_{\perp} - \delta_{\parallel})$	$D \cos (\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \cos \phi_h$	$ A_0(0)A_{\parallel}(0) $	$\cos (\delta_{\parallel} - \delta_0)$	$D \cos (\delta_{\parallel} - \delta_0)$	$C \sin (\delta_{\parallel} - \delta_0)$	$-S \cos (\delta_{\parallel} - \delta_0)$
6	$-\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \cos \phi_h$	$ A_0(0) A_{\perp}(0) $	$C \sin (\delta_{\perp} - \delta_0)$	$S \cos (\delta_{\perp} - \delta_0)$	$sin (\delta_{\perp} - \delta_0)$	$D \cos (\delta_{\perp} - \delta_0)$
7	$\frac{2}{3}\sin^2\theta_{\mu}$	$ A_{S}(0) ^{2}$	1	-D	С	S
8	$\frac{1}{3}\sqrt{6}\sin\theta_{K}\sin 2\theta_{\mu}\cos\phi_{h}$	$ A_{S}(0)A_{\parallel}(0) $	$C \cos (\delta_{\parallel} - \delta_S)$	$S \sin (\delta_{\parallel} - \delta_S)$	$\cos (\delta_{\parallel} - \delta_{S})$	$D \sin (\delta_{\parallel} - \delta_S)$
9	$-\frac{1}{3}\sqrt{6}\sin\theta_{K}\sin 2\theta_{\mu}\sin\phi_{h}$	$ A_{S}(0)A_{\perp}(0) $	$sin (\delta_{\perp} - \delta_S)$	$-D \sin (\delta_{\perp} - \delta_{S})$	$C \sin (\delta_{\perp} - \delta_S)$	$S \sin (\delta_{\perp} - \delta_{S})$
10	$\frac{4}{3}\sqrt{3}\cos\theta_L\sin^2\theta_\mu$	$ A_{S}(0) A_{0}(0) $	$C \cos (\delta_0 - \delta_S)$	$S \sin (\delta_0 - \delta_S)$	$\cos(\delta_0 - \delta_S)$	$D \sin (\delta_0 - \delta_S)$

$${\rm S} = -\frac{2\,|\lambda|}{1+|\lambda|^2}\,\sin\left(\phi_{\rm S}\right)\;,\; {\rm D} = -\frac{2\,|\lambda|}{1+|\lambda|^2}\,\cos\left(\phi_{\rm S}\right)\;,\; {\rm C} = \frac{1-|\lambda|^2}{1+|\lambda|^2}$$

 $\mathsf{Intro} \quad \mathsf{B}^0_s \to J/\psi \; \mathsf{K}^+\mathsf{K}^- \; \mathsf{Analysis} \quad \mathsf{B}^0_s \to J/\psi \; \mathsf{K}^+\mathsf{K}^- \; \mathsf{Results} \quad \mathsf{B}^0_s \to \varphi \; \varphi \; \varphi \; \mathsf{Analysis} \quad \mathsf{B}^0_s \to \varphi \; \varphi \; \mathsf{Results} \quad \mathsf{Summary} \; \mathsf$

$\rm B^0_s \rightarrow J\!/\psi \; \rm K^+ \rm K^-$ Ambiguity Resolution

In order to resolve the 2-fold ambiguity resolution present in the $\phi_{\rm s}/\Delta\Gamma_{\rm s}$ plane the phase difference between the S and P-wave is used.

${\rm B_s^0} \to {\rm J}\!/\psi \; {\rm K^+K^-}$ Systematic Uncertainties

Source	Γ_s	$\Delta \Gamma_s$	$ A_{\perp} ^2$	$ A_0 ^2$	δ_{\parallel}	δ_{\perp}	ϕ_s	$ \lambda $
	$[ps^{-1}]$	$[ps^{-1}]$			[rad]	[rad]	[rad]	
Stat. uncertainty	0.0048	0.016	0.0086	0.0061	$^{+0.13}_{-0.21}$	0.22	0.091	0.031
Background subtraction	0.0041	0.002	-	0.0031	0.03	0.02	0.003	0.003
$B^0 \rightarrow J/\psi K^{*0}$ background	-	0.001	0.0030	0.0001	0.01	0.02	0.004	0.005
Ang. acc. reweighting	0.0007	-	0.0052	0.0091	0.07	0.05	0.003	0.020
Ang. acc. statistical	0.0002	-	0.0020	0.0010	0.03	0.04	0.007	0.006
Lower decay time acc. model	0.0023	0.002	-	-	-	-	-	-
Upper decay time acc. model	0.0040	-	-	-	-	-	-	-
Length and mom. scales	0.0002	-	-	-	-	-	-	-
Fit bias	-	-	0.0010	-	-	-	-	-
Quadratic sum of syst.	0.0063	0.003	0.0064	0.0097	0.08	0.07	0.009	0.022
Total uncertainties	0.0079	0.016	0.0107	0.0114	+0.15 -0.23	0.23	0.091	0.038

$\rm B^0_s \rightarrow J\!/\psi \, h^+h^-$ Results

Parameter	Value
$\Gamma_s [\mathrm{ps}^{-1}]$	$0.661 \pm 0.004 \pm 0.006$
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	$0.106 \pm 0.011 \pm 0.007$
$ A_{\perp} ^2$	$0.246 \pm 0.007 \pm 0.006$
$ A_0 ^2$	$0.523 \pm 0.005 \pm 0.010$
$\delta_{\parallel} [{\rm rad}]$	$3.32^{+0.13}_{-0.21}\pm 0.08$
$\delta_{\perp} [\mathrm{rad}]$	$3.04 \pm 0.20 \pm 0.07$
$\phi_s \ [rad]$	$0.01 \pm 0.07 \pm 0.01$
$ \lambda $	$0.93 \pm 0.03 \pm 0.02$

$\rm B^0_s \rightarrow J\!/\!\psi \, h^+ h^-$ Correlation

	Γ_s	$\Delta\Gamma_s$	$ A_{\perp} ^2$	$ A_0 ^2$	δ_{\parallel}	δ_{\perp}	ϕ_s	$ \lambda $
	$[{\rm ps}^{-1}]$	$[{\rm ps}^{-1}]$			[rad]	[rad]	[rad]	
$\Gamma_s [\mathrm{ps}^{-1}]$	1.00	0.10	0.08	0.03	-0.08	-0.04	0.01	0.00
$\Delta\Gamma_s [\mathrm{ps}^{-1}]$		1.00	-0.49	0.47	0.00	0.00	0.00	-0.01
$ A_{\perp} ^2$			1.00	-0.40	-0.37	-0.14	0.02	-0.05
$ A_0 ^2$				1.00	-0.05	-0.03	-0.01	0.01
$\delta_{\parallel} [\mathrm{rad}]$					1.00	0.39	-0.01	0.13
δ_{\perp} [rad]						1.00	0.21	0.03
$\phi_s \text{ [rad]}$							1.00	0.06
$ \lambda $								1.00

$B_s^0 \rightarrow \varphi \varphi$ Full PDF

i	K_i	f_i
1	$ A_0(t) ^2$	$4\cos^2\theta_1\cos^2\theta_2$
2	$ A_{\parallel}(t) ^2$	$\sin^2\theta_1\sin^2\theta_2(1+\cos 2\Phi)$
3	$ A_{\perp}(t) ^2$	$\sin^2\theta_1\sin^2\theta_2(1-\cos 2\Phi)$
4	$Im(A_{\parallel}^{*}(t)A_{\perp}(t))$	$-2\sin^2 heta_1\sin^2 heta_2\sin 2\Phi$
5	$Re(A_{\parallel}^{*}(t)A_{0}(t))$	$\sqrt{2}\sin 2\theta_1\sin 2\theta_2\cos\Phi$
6	$Im(A_0^{*}(t)A_{\perp}(t))$	$-\sqrt{2}\sin 2\theta_1\sin 2\theta_2\sin \Phi$
7	$ A_{SS}(t) ^2$	$\frac{4}{9}$
8	$ A_{S}(t) ^{2}$	$\frac{4}{3}(\cos\theta_1+\cos\theta_2)^2$
9	$Re(A_S^*(t)A_{SS}(t))$	$\frac{8}{3\sqrt{3}}(\cos\theta_1+\cos\theta_2)$
10	$Re(A_0(t)A_{SS}^*(t))$	$\frac{8}{3}\cos\theta_1\cos\theta_2$
11	$Re(A_{\parallel}(t)A_{SS}^{*}(t))$	$\frac{4\sqrt{2}}{3}\sin\theta_1\sin\theta_2\cos\Phi$
12	$Im(A_{\perp}(t)A_{SS}^{*}(t))$	$-\frac{4\sqrt{2}}{3}\sin\theta_1\sin\theta_2\sin\Phi$
13	$Re(A_0(t)A_S^*(t))$	$\frac{8}{\sqrt{3}}\cos\theta_1\cos\theta_2(\cos\theta_1+\cos\theta_2)$
14	$Re(A_{\parallel}(t)A_{S}^{*}(t))$	$\frac{4\sqrt{2}}{\sqrt{3}}\sin\theta_1\sin\theta_2(\cos\theta_1+\cos\theta_2)\cos\Phi$
15	$Im(A_{\perp}(t)A_{S}^{*}(t))$	$-\frac{4\sqrt{2}}{\sqrt{3}}\sin\theta_1\sin\theta_2(\cos\theta_1+\cos\theta_2)\sin\Phi$
	$d^4\Gamma \left(B_s^0 \rightarrow \varphi \varphi \right) = \frac{19}{5}$	5
	$dtd\Omega \propto \sum_{i=1}^{\infty} dtd\Omega$	$_{i} \kappa_{i} (\Omega) t_{i} (t)$

Blue: P-Wave Yellow: S-Wave CP-Odd +CP-Even Red: $\phi\phi, f_0 f_0$ interference Green: $\phi\phi, \phi f_0$ interference

${\rm B_s^0} ightarrow \varphi \varphi$ Results

Parameter	Value	$\sigma_{ m stat.}$	$\sigma_{\rm syst.}$
$\phi_s[\text{rad}] \ (68 \ \% \ \text{CL})$		[-2.37, -0.92]	0.22
$ A_0 ^2$	0.329	0.033	0.017
$ A_{\perp} ^2$	0.358	0.046	0.018
$ A_{ m S} ^2$	0.016	$^{+0.024}_{-0.012}$	0.009
$\delta_1 \text{ [rad]}$	2.19	0.44	0.12
$\delta_2 \text{ [rad]}$	-1.47	0.48	0.10
$\delta_{\rm S} [{\rm rad}]$	0.65	$+0.89 \\ -1.65$	0.33

