CMB Bounds on Light Dark Matter

Aravind Natarajan (Carnegie Mellon University) PHENO 2013, U. Pittsburgh May 7 2013

Exciting results from experiments

Low mass DM can be tested with the CMB

- CMB is well understood (linear physics)
 and very well measured by WMAP + Planck + ACT/SPT.
- DM annihilation is most important at high redshifts z > 100
 Thus halos are not very important.
 No astrophysical backgrounds to worry about.

DM annihilation to standard model particles

$$\chi\chi \longrightarrow b\bar{b}$$

$$e^{\pm}, p\bar{p}, d\bar{d}, \gamma\gamma, \nu\bar{\nu}$$

- e[±]: inverse Compton scatter with the CMB very quickly
 --> Boost CMB to higher energies.
 Medium energy photons photoionize the gas.
- p[±] inverse Compton scatter slowly.
- Delbruck scatter with the CMB.
 Ionize and Compton scatter with neutral atoms.

A.N. & Schwarz 2009, 2010; Cirelli & Panci 2009; Belikov & Hooper 2009; Slatyer, Padmanabhan, & Finkbeiner 2009; Furlanetto & Stoever 2010

DM annihilation to standard model particles

TT damped on small scales EE boosted on large scales

A.N. 2012, A.N. et al. in preparation.

Damping of the TT spectrum is scale dependent due to causality

$$C_l \propto A_{\rm s} \left(k/k_{\rm pivot} \right)^{n_{\rm s}} e^{-\tau}$$

Let's keep n_s fixed, but increase As

Red: no DM
Blue: with DM

BUT

Damping of the TT spectrum is scale dependent due to causality

$$C_l \propto A_{\rm s} \left(k/k_{\rm pivot} \right)^{n_{\rm s}} e^{-\tau}$$

Let's keep As fixed, but increase ns

BUT

Red: no DM

Blue: with DM

CMB Data & Variables

Cosmological: $h, au, n_{
m s}, A_{
m s}, \Omega_{
m b} h^2, \Omega_{
m c} h^2$

Particle: m_χ

Nuisance: A_tSZ, A_kSZ, A_PS(100), A_PS(143), A_PS(217), A_CIB(143), A_CIB(217) [PLANCK]

+ A_SZ, A_CIB_cl, A_CIB_ps [SPT]

Data: PLANCK (for TT)

+ WMAP (for TT, EE and TE)

+ SPT (high ell TT)

+ ACT (high ell TT)

Bounds on the WIMP mass:

$$\xi = \frac{1 \text{ pb}}{m_{\chi}} \frac{f_{\text{abs}}}{1.0}$$

Preliminary results.

With simulated Planck Polarization data:

82 uK sqrt(s); 30 months, 7 arcminutes.

m > 65 GeV at 95% CL!

Conclusions

WIMPs are well motivated dark matter candidates.
 Low mass WIMPS are favored by direct detection expts.

- Low mass WIMPs annihilate at early times z > 100.
 The energy released is absorbed by gas
 --> The gas is ionized and heated.
- The CMB is a very clean probe of low mass WIMP dark matter.
 Current limits from Planck + WMAP + SPT + ACT disfavor WIMP mass < 20 GeV if f_{abs} = 1.0 and c/s = 1 pb.c
- Polarization data from Planck can constrain WIMP masses as large as 65 GeV for f_abs = 1.0 and c/s = 1 pb.c!