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Asymmetric dark matter may alter the evolution of very low-mass stars and brown dwarfs
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We study energy transport by asymmetric dark matter (ADM) in very low-mass stars and brown dwarfs.
Our motivation is to explore astrophysical signatures of ADM, which may not otherwise be amenable to
indirect dark matter searches. In viable models, the additional cooling of low-mass stellar cores can alter
stellar properties. ADM with mass 4 < M, /GeV =< 10 and a spin-dependent (spin-independent) cross
section of o3 ~ 107 cm? (o' ~ 107" cm?) increases the minimum mass of main sequence hydrogen
burning, partly determining whether or not the object is a star at all. Similar ADM candidates reduce the
luminosities of low-mass stars and accelerate the cooling of brown dwarfs. Such light dark matter is of
interest given results from the DAMA and CoGeNT dark matter searches. We discuss possibilities for
observing dark matter effects in stars and exploiting these effects to constrain dark matter candidates.
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Abstract. We analyze self-consistent N-body simulations of the Milky Way disk and the



CDMS COLLABORATION [ARXIV:1304.4279]
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Geringer-Sameth & Koushiappas [arXiv:1108.2914] and Fermi collab. [arXiv:1108.3546]
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L « M35 ; Less energ; T to be moved around
to dramatically alter: the stellar structure

Low-mass (= 0.2 M) are just hot enough to fuse

hydrogen and fusion rates are VERY sensitive to
core temperature.

Astronomical observatories are just becoming
capable of taking a census of low-mass stars!
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SAGITTARIUS
STREAM

E.G., FREESE ET AL. 2004, SAVAGE ET AL. 2006, KUHLEN ET AL. 2011;
PURCELL, ZENTNER, WANG 2012 «—THIS RESULT
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¢ THE SGR STREAM LIKELY
“IMPACTS” THE SOLAR SYSTEM.

e THE SGR STREAM PARTICLES
ARE ALL HIGH-VELOCITY

e THE SGR STREAM PARTICLES
ARE OUT OF PHASE FROM THE
GENERAL SOLAR SYSTEM SIGNAL.



THE SGR S:EREAM
INDUGES ...

o ~20-40% HIGHER EVENT RATES
COMPARED TO HALO ALONE.

® A DECREASED ANNUAL MODULATION
AMPLITUDE BY AS MUCH AS A FACTOR OF ~2

© A SHIFT IN THE PEAK OF THE ANNUAL
MODULATION SIGNAL AS MUCH AS —~20 DAYS

® |l OWER ENERGY OF PHASE-REVERSAL OF
ANNUAL MODULATION SIGNAL BY ~ 0.2

KEVNR



e LOW-MASS DARK MATTER PARTICLES
(= 20 GEV) MAY ALTER LOW-MASS

STELLAR EVOLUTION

¢ SIGNIFICANTLY LOWER STELLAR
LUMINOSITIES AT FIXED MASS,
PARTICULARLY IN DWARF GALAXIES

e | OW-MASS DARK MATTER PARTICLES
CAN HAVE DIRECT SEARCH SIGNATURES
SIGNIFICANTLY ALTERED DUE TO SGR

STREAM DARK MATTER NEAR THE SUN.



LSST/Euclid
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IN LOW-MASS STAR
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CORE TEMPERATURE [10°K]

M,=5 GeV

GISDDz 10737 cm?

STABLE
BURNING

CORE DENSITY [CcGS]

SIMILAR
RESULTS FOR
Mx s 7 GEV,

GSI = 10-40 cmz



@ teniyotrhs Sagjttarius Debris at Earth

from cosmological context

|Ight Sgr | : | and kinematic
: 1 ' reconstructions:
Sgr progenitor was

massive

i ~ 10.5
[OTS of dark matter light Sgr = 109> Mo
— heavy Sgr = 101! Mo

|
|
|

- s —

. Prreriel
LN

N —

surface density: disk mid-plane Sgr dark matter tidal arm is

107 E (Mo/pc?) raining directly onto the
dark mater G Earth

Y 4
Galactic e ..even though the
M— stellar stream is
not!

Purcell+12, Fig. 1 S kpc 5 kpc e A
..no evidence for vertically-coherent kinematic sub-populations within ~100 Correnti et al. '10

) Law & Majewski '10
pc of Sun: e.g. Helmi et al. 2006; Re Fiorentin et al.
2011

ArXiv: astro-ph/1203.6617 ‘www.chrispurcell.org



http://www.chrispurcell.org
http://www.chrispurcell.org

@) University of Pittsburgh Dark Matter Direct Detection

A variety of nuclear-
recoil experiments have

",f tentative constraints,
S and are poised to detect
| WIMPs in the
. ~ near-term future...
WIMPs and Neutrons
scatter from the

Atomic Nuchllis <

—_—

XENONI00 (0100 ™ &

WIMP-Nucleon Cross Section [cm?)
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R ..but interpretations of the event rates typically assume a
= 2 standard halo model of the local speed distribution of dark

matter!
\—
(v)

scattering _ dR
event rate  dE ~ g(v)= ff (v) /v

"CDMS press image

May 7 @ ArXiv: astro-ph/1203.6617 www.chrispurcell.org
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@) University of Pittsburgh Dark Matter Direct Detection

dR

TS ~ g(v)

ArXiv: astro-ph/1203.6617 ‘www.chrispurcell.org
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@) University of Pittsburgh Dark Matter Direct Detection

Germonium Recoil Ener keV,
g Meceh r o)
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«—— holo+disk
light Sgr

y 2Qr

(=

holo + disk
~ oy R standard halo
e model
underestimates
event-rates by a
factor of >2-5!

f(v) = N(v)/[av x N] in 10° (km/s)™"
alassaaaaaalaaaaassaalassasaaaalasaaaasaalany

o. N
0.6k o :
04F - ; . stellar disk also

e N ' boosts rates by a
0.0F ff L A\Y \ oF factor of 2 or
Eors . more!

Purcéll+¥2, Fig.*?,,

rate
when integrating over the high-end of the speed
distribution,
so Sagittarius debris adds another 10-20% (for light
WIMPs)

ArXiv: astro-ph/1203.6617 www.chrispurcell.org
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@ Univessity of Pisburgh — Annual Modulation: Sgr Signal?
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Peak Day—Number

S A i S Sl R S Rl holo + disk
light Sgr: A = 0.0368 peok = 136
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DAMA/LIBRA z10 ronge:
neovy 597 {1 M%) on sodium © 2-4 keVee
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Only significant debris flows (and not ancient micro-
streams) can drag the peak away from the SHM-predicted
value by several days...
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.Is DAMA already “seeing” Sgr dark matter?!

ArXiv: astro-ph/1203.6617 www.chrispurcell.org
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@ University of Pittsburgh ala 2aNSs

Dark matter from the disrupting Sagittarius
dwarf
is raining onto Earth at the solar
neighborhood,
and inducesa 10-20% boost in recoil-event
rates

Self-consistent mapping from N-body halo rates
(e.g. for VL2, Aquarius) to those predicted for same
halos
with realistic Galactic disks: important on factor of
2 level

WIMP V-’lnd
Coherently-moving Sgr debris
changes phase of annual
modulation
signal by as muchas 10-20
(s EAVS

DANA/LSRA 210 ronge:
on sodium © 2-4 keVee

..experiments are poised to test DAMA/
LIBRA

and could confirm Sgr dark matter on Earth!

ArXiv: astro-ph/1203.6617 ‘www.chrispurcell.org
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