Spin-3/2 quarks at the LHC

Durmus Karabacak
Oklahoma State University
PHENO `13
Univ. of Pittsburg

D. Dicus, D.K., S. Nandi, Santosh K. Rai, arXiv: 1208.5811 PRD87 015023

Outline

- Introduction & Motivation
- Feynman Rules for spin-3/2 particle
- Cross section Calculation
- Signals at the LHC
 - a. Four-jet
 - b. Two-b jets & two light jets
 - c. Two-t and two light jets
- Conclusions

Colored particles in the SM: Quarks & Gluons

Colored particles in the SM: Quarks & Gluons

+

BSM: Exotic particles

Many extensions of the SM predict new colored states:

SUSY: squarks & sgluons

Extra Dimensions: KK excitations of SM quarks & gluons

Extended Gauge Symmetries: scalar diquarks, colorons etc.

4th Generation Quarks: (eg. t`, b`)

Colored particles in the SM: Quarks & Gluons

+

BSM: Exotic particles

Many extensions of the SM predict new colored states:

SUSY: squarks & sgluons

Extra Dimensions: KK excitations of SM quarks & gluons

Extended Gauge Symmetries: scalar diquarks, colorons etc.

4th Generation Quarks: (eg. t`, b`)

Possible experimental signature:

- New resonances decaying two-jet, three-jet etc.
- Multijet +/ multi-lepton final state
- Missing E_T with high jet multiplicity

It is possible to have a spin-3/2 quark by

- Bound states of quarks & gluons
- Bound states of three heavy quarks (Taylor, 1979)
- Higher spin excitations of the SM fields in warped extra dimension models (Hassanain + , 2008)
- Effects of excited top on t that production (Stirling +, 2012)

It is possible to have a spin-3/2 quark by

- Bound states of quarks & gluons
- Bound states of three heavy quarks (Taylor, 1979)
- Higher spin excitations of the SM fields in warped extra dimension models (Hassanain + , 2008)
- Effects of excited top on t that production (Stirling +, 2012)

We consider the pair production of spin-3/2 quark each decaying to quark and gluon.

Feynman rules for spin-3/2 particles

Lagrangian for spin-3/2 particles:

on-shell

$$\mathcal{L} = \bar{\psi}_{\alpha} \Lambda^{\alpha\beta} \psi_{\beta}$$

$$\gamma^{\alpha}\psi_{\alpha}=0$$

where

$$\partial^{\alpha}\psi_{\alpha}=0.$$

$$\Lambda_{\alpha\beta} = (i\partial \!\!\!/ - M)g_{\alpha\beta} + iA(\gamma_{\alpha}\partial_{\beta} + \gamma_{\beta}\partial_{\alpha}) + \frac{iB}{2}\gamma_{\alpha}\partial \!\!\!/ \gamma_{\beta} + CM\gamma_{\alpha}\gamma_{\beta}$$

with
$$B \equiv 3A^{2} + 2A + 1$$
 and $C \equiv 3A^{2} + 3A + 1$

$$A$$
 is an arbitary parameter : $\psi_{\alpha} \to \psi_{\alpha}' = \psi_{\alpha} + d\gamma_{\alpha}\gamma_{\lambda}\psi^{\lambda}$ $A \to A' = rac{A-2d}{1+4d}$ where $d \neq -rac{1}{4}$.

The interaction of spin-3/2 quarks with gluons:

$$\mathcal{L}_{I} = g\bar{\psi}_{\alpha} \left(\frac{B}{2} \gamma^{\alpha} \gamma^{\mu} \gamma^{\beta} + A g^{\alpha\mu} \gamma^{\beta} + A \gamma^{\alpha} g^{\mu\beta} + g^{\beta\alpha} \gamma^{\mu} \right) T_{a} \psi_{\beta} A_{\mu}^{a}$$

Cross section calculation

$$pp \to Q_{3/2}\bar{Q}_{3/2} + X$$

We used A independence as a check in cross section calculation.

For quark-antiquark process:

$$\hat{\sigma}(q\bar{q} \to Q_{3/2}\bar{Q}_{3/2}) = \frac{\pi\alpha_s^2}{81\hat{s}}\beta \begin{bmatrix} \frac{8}{3}y^2 - \frac{16}{3}y - \frac{16}{3} + 96\frac{1}{y} \end{bmatrix}$$

$$E_{\text{CM}} = 7 \,\text{TeV} \qquad E_{\text{CM}} = 8 \,\text{TeV} \qquad E_{\text{CM}} = 14 \,$$

Leading-order pair production cross section for spin-3/2 quarks.

Signals at the LHC

• Higher dimension-five operators would lead to interactions between spin-3/2 quarks and SM quarks :

$$\mathcal{L}_{dim-5} = i \frac{g_s}{\Lambda} \bar{\psi}_{\alpha} \left(g^{\alpha\beta} + A \gamma^{\alpha} \gamma^{\beta} \right) \gamma^{\nu} T^a \frac{(1 \pm \gamma_5)}{2} \xi F^a_{\beta\nu} + H.C. \quad \text{(Stirling+, 12)}$$

• We assume that the colored spin-3/2 quark will decay promptly to a gluon and spin-1/2 SM quark with 100% branching probability.

Possible decays:

a light SM quark and a gluon
$$(Q_{3/2} \rightarrow qg)$$

or

$$(Q_{3/2} \rightarrow bg \text{ or } Q_{3/2} \rightarrow tg)$$

Four-jet final state

If the spin-3/2 quark decays to light quark and a gluon:

- Four jets in the final state
- All jets carry large transverse momenta
- Huge QCD background (sensitive to p_T requirement of jets)
- Resonance in a pair of dijet invariant mass distribution

$$|y_{j}| < 2.5$$

Kinematic Cuts: $M_{ii} > 10 \text{ GeV}$

$$\Delta R_{ii} > 0.5$$

	5	Signal	cross-s				
			<i>M</i> (G				
p_T cut (GeV)	500	600	700	800	900	1000	SM background (fb)
		1	$\sqrt{s} = 1$				
200	326.	124.	48.6	18.8	7.2	2.8	11900.
250	134.	51.9	24.9	11.5	5.1	2.1	2420.
300	65.2	21.0	10.1	5.7	3.0	1.5	577.
	$\sqrt{s}=8$ TeV						
300	194.	61.2	27.6	15.1	8.1	4.1	1270.
350	106.	32.2	12.6	6.6	4.1	2.4	377.
400	58.1	17.6	6.5	3.0	1.8	1.2	118.
	$\sqrt{s}=14$ TeV						
400	4842.	1549.	569.4	242.2	120.8	69.7	3013.
450	3271.	1074.	399.7	167.6	79.5	43.3	1315.
500	2184.3	746.9	280.8	117.6	54.9	28.4	609.2

	Signal cross-section (fb)						
			<i>M</i> (G				
p_T cut (GeV)	500	600	700	800	900	1000	SM background (fb)
		1	$\sqrt{s} = $				
200	326.	124.	48.6	18.8	7.2	2.8	11900.
250	134.	51.9	24.9	11.5	5.1	2.1	2420.
300	65.2	21.0	10.1	5.7	3.0	1.5	577.
	$\sqrt{s}=8$ TeV						
300	194.	61.2	27.6	15.1	8.1	4.1	1270.
350	106.	32.2	12.6	6.6	4.1	2.4	377.
400	58.1	17.6	6.5	3.0	1.8	1.2	118.
	$\sqrt{s}=14$ TeV						
400	4842.	1549.	569.4	242.2	120.8	69.7	3013.
450	3271.	1074.	399.7	167.6	79.5	43.3	1315.
500	2184.3	746.9	280.8	117.6	54.9	28.4	609.2

 Significant improvement in sensitivity when strong p_T cuts are used

$$S/\sqrt{B} \equiv L\sigma_S/\sqrt{L \sigma_b}$$
 is about 4.4

⁻ for $p_T > 200 \, GeV$ on the jets and for $M_O = 500 \, GeV$

- Signal will exhibit peak in the invariant mass distribution of a pair of jets
 - CMS analysis with 2.2 fb⁻¹ integrated luminosity @ 7 TeV run of LHC exclude coloron mass < 580 GeV.

(CMS-PAS-EXO-11-016)

- Corresponding bounds on spin-3/2 quarks mass > 490 GeV.

Two-b jets & two light jets

- If the spin-3/2 quark decays to a bottom quark and gluon :
 - 2 b-jets in the final state and 2 light jets (2b2j)
 - all jets carry large transverse momenta (p_T)
 - flavor tagging helps to reduce QCD background significantly
 - resonance in the invariant mass of light jet and b-jet

Kinematic cuts:

- $p_T > 150$ GeV on all jets and |y| < 2.5
- $\Delta R_{ij} > 0.7$

Invariant mass distribution of the leading b-jet and leading light jet

Invariant mass distribution of the leading b-jet and sub-leading light jet

$$M_{3/2}$$
 = 600 GeV, LHC @ 8 TeV

• As in the 4-jet analysis, stronger p_T cut on the jets will be useful in improving the signal to background ratio.

	Signal cross-section (fb)						SM background (fb)
pp o 2b2j	$M~({ m GeV})$						
	500	600	700	800	900	1000	
$\sqrt{s} = 7 \; TeV$	182.5	55.0	17.6	5.9	2.1	0.7	351.3
$\sqrt{s} = 8 \; TeV$	403.0	124.8	41.6	14.7	5.5	2.1	608.9
$\sqrt{s} = 14 \; TeV$	584.8	275.4	123.4	57.6	29.7	17.1	12.9

We have used b-tag efficiency of 0.5, while mistag of 0.1 for c-jet tagged as b-jet and 0.01 for light jet tagged as b-jet.

Sensitivity is significantly improved in the 2b2j mode for larger mass spin-3/2 quarks.

Two-t & two light jets

• If the spin-3/2 quark decays to a top quark and gluon :

$$pp \longrightarrow Q_{3/2}\bar{Q}_{3/2} \longrightarrow t\bar{t}gg$$

- New physics signal is more pronounced when the additional jets with high p_T are triggered upon
 - SM background generated using Madgraph 5

- Sensitivity is improved for higher center-of-mass energies

• Let us consider the full semileptonic decay of top quarks to analyze the signal:

$$pp \longrightarrow (Q_{3/2} \to tg) \longrightarrow (t \to bW^+)g \longrightarrow (W^+ \to \ell^+\nu_\ell)bg$$

 $\hookrightarrow (\bar{Q}_{3/2} \to \bar{t}g) \longrightarrow (\bar{t} \to \bar{b}W^-)g \longrightarrow (W^- \to \ell^-\bar{\nu}_\ell)\bar{b}g$
 $\hookrightarrow \ell^+\ell^-b\bar{b}jjE_T$

Choose two different set of cuts (differing mainly in p_T of the jets)

Variable	Cut \mathcal{C}_1	$\mathrm{Cut}\;\mathcal{C}_2$		
$p_T^{\ell,b}$	$> 10,20~{ m GeV}$	$> 10,20~{\rm GeV}$		
p_T^j	$> 50~{ m GeV}$	$> 200~{ m GeV}$		
$ \eta $	< 2.5	< 2.5		
ΔR_{jj}	> 0.4	> 0.7		
$\Delta R_{\ell\ell,\ell j,\ell b,b j}$	> 0.2	> 0.2		

	Signal	cross-secti	SM background (fb)	
$pp ightarrow \ell^+\ell^-bbjjE_T$		$M~({ m GeV})$		
	500	800	1000	
$\sqrt{s} = 8 \; TeV$	20.1 (7.8)	0.4 (0.3)	0.055 (0.045)	93.2 (2.9)
$\sqrt{s} = 14 \ TeV$	385.9 (186.1)	11.2 (8.2)	1.9 (1.6)	522.8 (26.7)

cuts $C_1(C_2)$

Stronger cuts on the jet transverse momenta help more in improving S/B for larger values of spin-3/2 quark mass .

If the top decays hadronically, one can reconstruct the spin-3/2 mass from the 3-jet invariant mass distribution.

t* > 790 GeV
$$L = 9.6 fb^{-1} @ 8 \text{ TeV}. \text{ (CMS PAS B2G-12-014)}$$

Conclusions

- We studied the interesting resonant signals coming from the decay of spin-3/2 quark.
- Use of specific selection cuts on the kinematics helps to increase the LHC sensitivity to heavier spin-3/2 quark mass.
- Spin-3/2 quarks can lead to resonant signals in the 2-jet and 3-jet invariant mass distributions
- Existing LHC studies can be extended and/or applied to search for spin-3/2 quarks.

THANK YOU

Extras

	Signa	l cross-se		
pp o t ar t j j	1	M (GeV)	SM background	
$(p_T^j > 100 \text{ GeV})$	500	800		
$\sqrt{s} = 7 \; TeV$	1.11 pb	21.7 fb	2.4 fb	2.12 pb
$\sqrt{s} = 8 \; TeV$	2.38 pb	53.4 fb	6.8 fb	3.55 pb
$\sqrt{s} = 14 \ TeV$	49.4 pb	1.46 pb	249. fb	24.7 pb

Invariant mass distribution of the leading b-jet and leading light jet

Invariant mass distribution of the leading b-jet and sub-leading light jet

 $M_{3/2}$ = 1 TeV, LHC @ 14 TeV