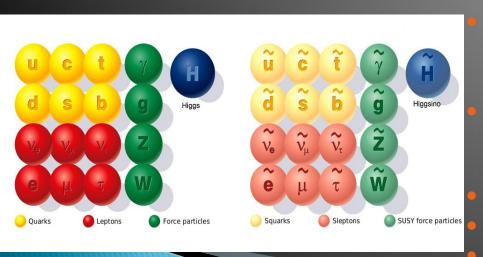
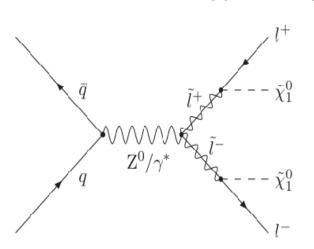
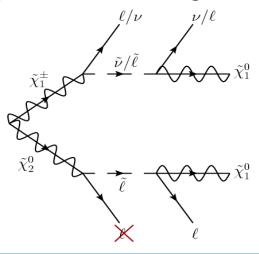
Searches for electroweak production of supersymmetric neutralinos, charginos and sleptons with the ATLAS detector

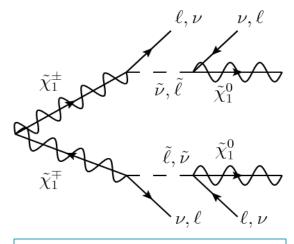

Per Johansson, Sheffield University, UK On behalf of the ATLAS collaboration Pheno-13, 6-8 May 2013, Pittsburgh

SuperSymmetry

- Is an extension of the Standard Model
 - Solution to the hierarchy problem
 - Gauge coupling unification
 - Can provide dark matter candidate
 - Provided R-parity is conserved


- Each SM particle gets a superpartner
 - Spin differs by half a unit
 - Heavier mass
- Higgs and EW gauge bosons -> gauginos: $(\widetilde{\chi}_{i}^{0}, \widetilde{\chi}_{i}^{\pm})$
 - Neutralinos and Charginos
- Leptons -> Sleptons $(\widetilde{\ell})$
- Quarks -> Squarks (\tilde{q})
- Gluons -> Gluinos (\tilde{g})


SUSY at LHC

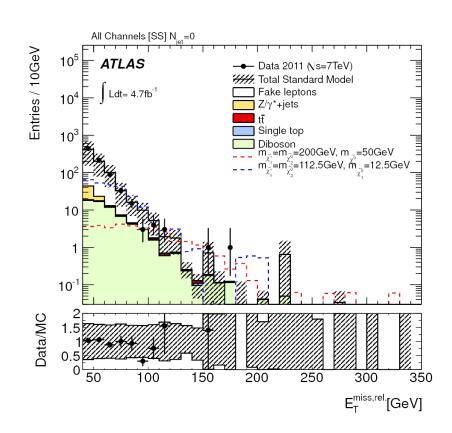

- SUSY particle production channels at LHC:
 - \circ Strongly produced squarks and gluinos, which decays into final states with jets and $E_T^{\it miss}$ (+leptons/fotons)
 - \circ Electroweak production of neutralinos, charginos and sleptons which decays into final states with multiple leptons and $E_{\scriptscriptstyle T}^{\it miss}$
- Natural SUSY predicts light stops and gauginos to cancel divergences in higgs mass
- Charginos, neutralinos and possible sleptons might be light and their production rate sizable at the LHC

2-lepton signal regions

- Look for final states containing exactly 2 leptons and relative missing energy
- Four different signal regions are used
 - Cover both opposite-sign (OS) and same-sign (SS) final states

SR: m_{T2}

 $E_T^{miss,rel} >$ 40 GeV Jet Veto Z-Veto $m_{T2} >$ 90 GeV SR: OSJVeto, SSJVeto

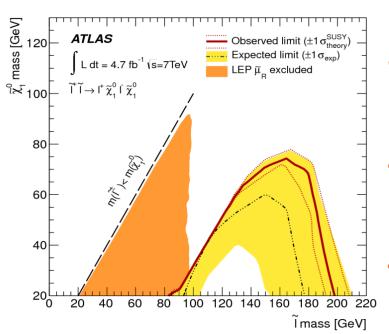

 $E_T^{miss,rel} > 100 \text{ GeV}$ Jet Veto Z-Veto in OSJVeto SR: 2Jets

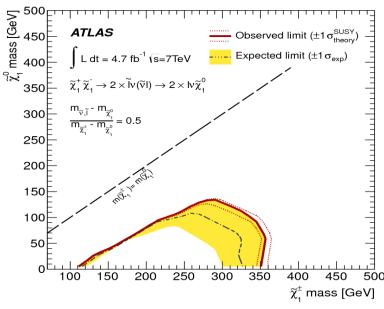
 $E_T^{miss,rel} > 50 \text{ GeV}$ $\geq 2 \text{ Jets}$ Z-VetoBjet and Top Veto

$$m_{T2}^2(\mu_N) \equiv \min_{\mathbf{p}_T^1 + \mathbf{p}_T^2 = \not p_T} \left[\max\{ m_T^2(\mathbf{p}_T^1, \, \mathbf{p}_T^a; \, \mu_N), \, m_T^2(\mathbf{p}_T^2, \, \mathbf{p}_T^b; \, \mu_N) \} \right]$$

2-lepton results

- The results shown below are for 4.7 fb⁻¹ collisions taken at $\sqrt{s} = 7$ TeV
- The plot shows the relative missing energy distribution in the SR:SSJVeto channel prior to the final requirement: $E_T^{miss,rel} > 100\,\mathrm{GeV}$
- The main backgrounds are Z+Jets shown in yellow, dibosons (green), and top quark pairs (red) (all MC estimations) Charge flipping and fake leptons (white) (data driven)
- The data/SM agreement is very good
- Two signal points are illustrated
- The hatched band indicates the experimental uncertainties on the background expectation
- The bottom panel shows the distributions of data over SM background ratio.

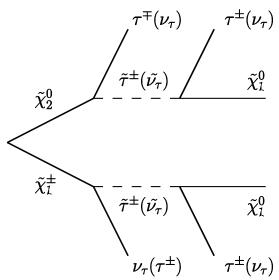



Selection	M _{T2}	OSJVeto	SSJVeto	2Jets
SM	32.8±3.2±6.3	161.7±6.7±30.8	11.0±1.5±3.9	65.5±4.0±31.8
DATA	24	139	9	78

2-lepton exclusion plots

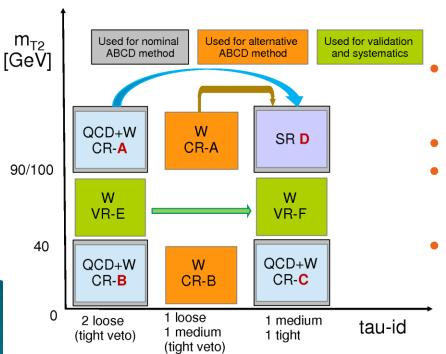
- $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$ production in a simplified model (right) Free parameters: $\widetilde{\chi}_{1}^{0}$, $\widetilde{\chi}_{2}^{0}$, $\widetilde{\chi}_{1}^{\pm}$, \widetilde{l} , $\widetilde{\upsilon}$

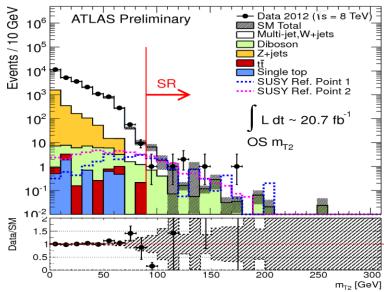
 - All other sparticles decoupled
- Chargino masses between 110 and 340 GeV are excluded for a 10 GeV neutralino
- The dashed and solid lines show the 95% CLs expected and observed limits, respectively


- $\tilde{\ell}^{\pm}$ pair production in the $m_{\tilde{\ell}} m_{\chi_1^0}$ mass plane for direct slepton production (left)
 - Free parameters: $\widetilde{\chi}_{1}^{0}, \widetilde{l}$
 - All other sparticles decoupled
- $m_{\tilde{e}_L} = m_{\tilde{\mu}_L}$ and excluded between 85 and 195 GeV for a 20 GeV neutralino
 - The LEP limit is a conservative limit on slepton pair production: if right-handed slepton masses are excluded, left-handed sleptons of equivalent masses are automatically excluded.

Scenario with taus

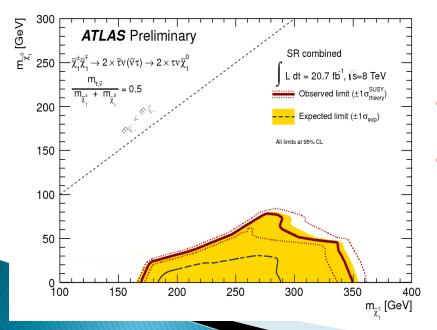
- Look for events with at least two hadronically decaying taus and missing transverse momentum
 - At least one of the selected tau pairs have opposite sign
 - Events with additional light leptons are vetoed
 - Z-Veto (invariant mass of at least one of the OS tau pairs within 10 GeV of Z-mass)
- Two signal regions are used

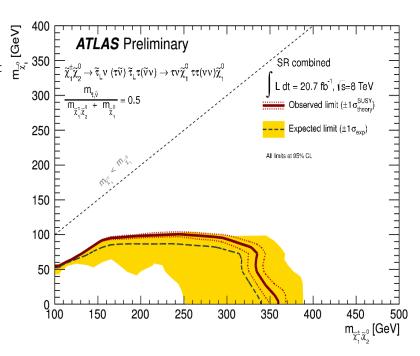

SR:
$$m_{T2}$$
Jet Veto
$$E_T^{miss} > 40 \,\text{GeV}$$
 $m_{T2} > 90 \,\text{GeV}$


SR:
$$m_{T2}$$
-nobjet b -Jet Veto $E_T^{miss} > 40 \, \mathrm{GeV}$ $m_{T2} > 100 \, \mathrm{GeV}$

Tau results

- The results shown below are for 20.7 fb⁻¹ collisions taken at $\sqrt{s} = 8$ TeV
- The right plot shows the m_{T2} distribution for the SR: m_{T2} channel.
- The main backgrounds are fake taus from W-jets and multi-jets shown in white followed by diboson events shown in green
- The data/SM agreement is very good

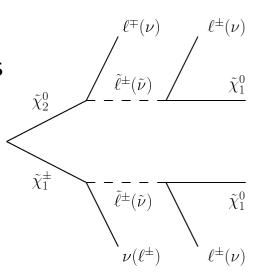


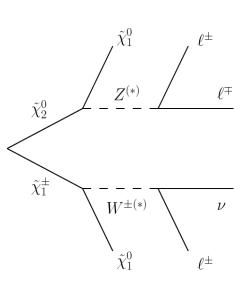


- The left figure shows the overview of the data driven method used to estimate the main backgrounds
- The parameters chosen are weakly correlated
- Ratio of the number of events in Control Region (CR) A and B equals that of SR D to CR C
- Number of SR events can therefore be calculated from number of CR A events normalized to the C and B ratio

Tau exclusions

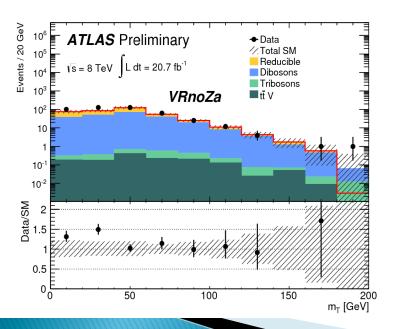
- The right plot shows the limits from $\widetilde{\chi}_2^0 \widetilde{\chi}_1^{\pm}$ production in a simplified model
- Chargino masses up to 330 (300) GeV are excluded for neutralino masses below 50 (100) GeV

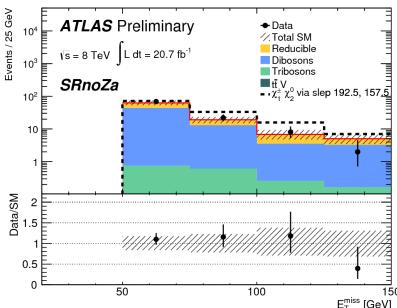



- The left plot shows the limits from $\widetilde{\chi}_1^{\mp}\widetilde{\chi}_1^{\pm}$ production in a simplified model
- Chargino masses up to 350 GeV are excluded for a massless neutralino

3-lepton signal regions

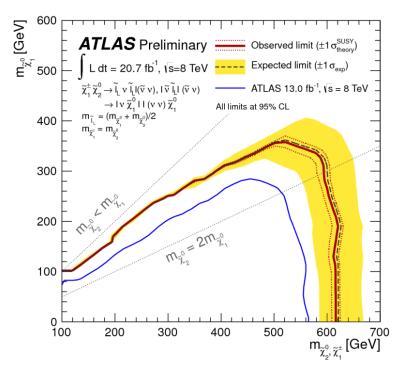
- $\widetilde{\chi}_2^0 \widetilde{\chi}_1^\pm$ production leading to 3 leptons and E_T^{miss}
- Selected events must contain exactly 3 signal leptons and at least one same-flavour opposite-sign lepton (SFOS) pair
 - Any SFOS pair must have an invariant mass > 12 GeV
- No B-jets with $P_T > 20 \text{ GeV}$
- Six signal regions were used:
 - Three "Z-depleted" regions with no SFOS pair with and invariant mass within 10 GeV of the Z mass
 - Three "Z-enriched" regions with at least one SFOS pairs invariant mass within 10 GEV of the Z mass

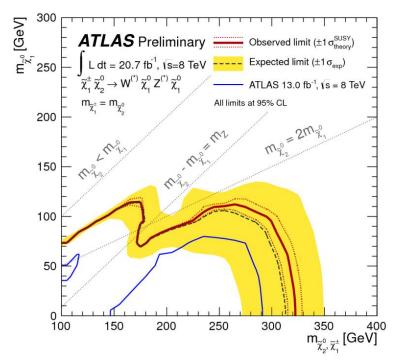

selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
M _{SFOS}	<60	60-81.2	<81.2 or >101.2	81.2- 101.2	81.2- 101.2	81.2- 101.2
E _T miss	>50	>75	>75	75-120	75-120	>120
M_{T}	-	-	>110	<110	>110	>110
P _T 3 rd I	>10	>10	>30	>10	>10	>10



3-lepton results

- The results shown below are for 20.7 fb⁻¹ collisions taken at $\sqrt{s} = 8$ TeV
- The right plot shows the $E_T^{\it miss}$ distribution for events in the SRnoZa channel
- The main backgrounds are irreducible WZ/gamma events and reducible ttbar events
- The data/SM agreement is very good
 - As seen in the table

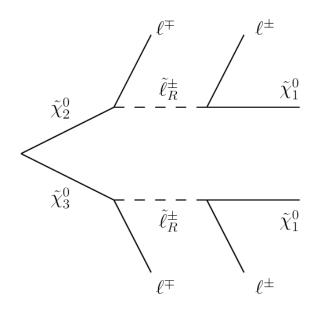



- The background predictions have been tested in validation regions outside but close to the signal regions
- The left plot shows the m_T distribution for the VRnoZa channel
 - Dominated by WZ

selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
SM	96 ± 19	29 ± 6	4.4 ± 1.8	249 ±35	22 ± 5	6.3 ± 1.5
DATA	101	32	5	273	23	6

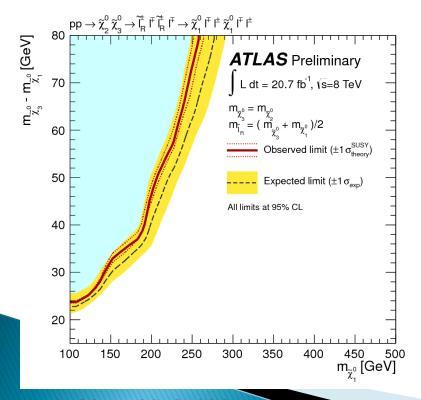
3-lepton exclusion plots

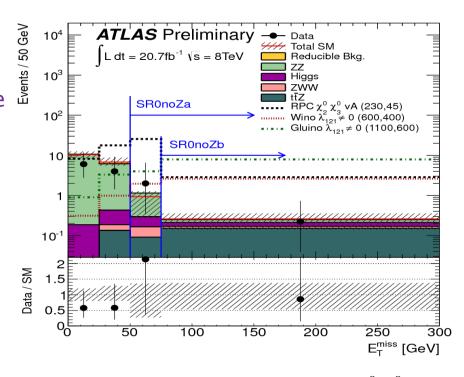
- The interpretation of the results have been made in a simplified model
- The plots show limits from $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ production with (left) and without (right) sleptons.


 Chargino masses up to 600 or 315 GeV are excluded if decaying through sleptons or decaying via gauge bosons to a massless lightest neutralino

12

4-lepton signal regions


- $igwedge \widetilde{\chi}^0_2 \widetilde{\chi}^0_3$ production leading to 4 leptons and E_T^{miss}
 - Only combinations with at least 3 light leptons are considered
 - Invariant mass of all light SFOS lepton pairs > 12 GeV
- Several signal regions are used for R-parity conserved/violated and gauge mediated SUSY
 - Will only cover the R-parity conserved channel here
 - Z veto defined as no light SFOS pairs with an invariant mass between 81.2 and 101.2 GeV


SR: SROnoZa $N(I = e, \mu) \ge 4$ $N(\tau) \ge 0$ Z veto $E_T^{miss} > 50 \, GeV$

4-lepton results and exclusions

- The results shown below are for 20.7 fb⁻¹ collisions taken at $\sqrt{s} = 8$ TeV
- The right plot shows the $E_T^{\it miss}$ distribution
- The main background is ZZ events shown in green followed by Higgs events in purple
- The data/SM agreement is very good

- The left plot shows the limits from $\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}$ production in a simplified model
- $m_{\widetilde{\chi}_1^0}$ < 250 GeV is excluded for $\Delta m(\widetilde{\chi}_3^0\widetilde{\chi}_1^0) \sim 80\,GeV$

Summary

- Several searches for gaugino and slepton production with the ATLAS detector were presented
- ▶ 20.7 fb⁻¹ at 8 TeV taken in 2012 were used except for the 2-lepton case which uses the 4.7 fb⁻¹ at 7 TeV taken in 2011(soon to be updated)
- Good agreement between data and standard model predictions is observed in all signal regions
- In simplified models using 3-lepton results chargino/neutralino masses are excluded up to 600 or 315 GeV depending on the decay mode
- From the tau scenario chargino masses up to 330 GeV are excluded for a neutralino below 50 GeV

Backup Slides

$E_T^{miss,rel}$ and m_T

- The relative missing transverse energy $E_T^{miss,rel}$ is determined by finding the $\Delta\phi$ between the E_T^{miss} and the closest signal electron, muon or jet.
- The idea is to reduce the impact of events where an object is badly reconstructed, such that it is aligned with the $E_T^{\it miss}$

$$E_{T}^{miss,rel} = \begin{cases} E_{T}^{miss} & \text{if } \Delta\phi_{l,j} \geq \pi/2 \\ E_{T}^{miss} \times \sin \Delta\phi_{l,j} & \text{if } \Delta\phi_{l,j} < \pi/2 \end{cases}$$

The transverse mass m_T is defined as the transverse mass in the plane formed by the and the lepton not belonging to the SFOS pair that forms the best Z-candidate.

$$m_T = \sqrt{2 \cdot E_T^{miss} \cdot p_T^l \cdot (1 - \cos \Delta \phi_{l, E_T^{miss}})}$$

Systematic uncertainties

- Jet energy scale and resolution
- Electron scale, resolution and efficiency
- Muon scale, resolution, efficiency and momentum
- B-tag efficiency
- Luminosity
- Theory and MC modelling