Inverse Seesaw in NMSSM and 126 GeV Higgs Boson

Bin He

Bartol Research Institute Department of Physics and Astronomy University of Delaware

Phys. Lett. B 718 (2013) 1008-1013 in collaboration with Ilia Gogoladze and Qaisar Shafi.

- Both ATLAS and CMS have reported the discovery of a scalar particle consistent with the SM Higgs boson of mass $m_h \approx 126~{\rm GeV}$
- In MSSM it requires a very large stop quark mass to accommodate $m_h \sim 126 \text{ GeV}$ ("little hierarchy" problem).
- NMSSM can alleviate the "little hierarchy" problem due to a tree level contribution to the Higgs potential.
- However, the couplings (λ, κ, y_t) in NMSSM will be all of $\mathcal{O}(1)$ at the GUT scale.

NMSSM

The NMSSM is obtained by adding to the MSSM a gauge singlet chiral superfield S and including the following superpotential terms:

$$W \supset \lambda SH_uH_d + \frac{\kappa}{3}S^3$$

The upper limit on the lightest CP-even Higgs boson mass in the NMSSM is given by

$$\begin{bmatrix} m_h^2 \end{bmatrix}_{NMSSM} = M_Z^2 \left(\cos^2 2\beta + \frac{2\lambda^2}{g_1^2 + g_2^2} \sin^2 2\beta \right) \left(1 - \frac{3}{8\pi^2} y_t^2 t \right) \\ + \frac{3}{4\pi^2} y_t^2 m_t^2 \sin^2 \beta \left[\frac{1}{2} \widetilde{X}_t + t + \frac{1}{(4\pi)^2} \left(\frac{3}{2} y_t^2 - 32\pi\alpha_s \right) \left(\widetilde{X}_t + t \right) t \right]$$

where

$$t = \log\left(\frac{M_{S}^{2}}{M_{t}^{2}}\right), \ \widetilde{X}_{t} = \frac{2\widetilde{A}_{t}^{2}}{M_{S}^{2}}\left(1 - \frac{\widetilde{A}_{t}^{2}}{12M_{S}^{2}}\right), \ \widetilde{A}_{t} = A_{t} - \lambda \langle S \rangle \cot \beta$$

<ロ> < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ())

NMSSM

For comparison

$$\begin{split} [m_h^2]_{NMSSM} &= M_Z^2 \left(\cos^2 2\beta + \frac{2\lambda^2}{g_1^2 + g_2^2} \sin^2 2\beta \right) \left(1 - \frac{3}{8\pi^2} y_t^2 t \right) \\ &+ \frac{3}{4\pi^2} y_t^2 m_t^2 \sin^2 \beta \left[\frac{1}{2} \widetilde{X}_t + t + \frac{1}{(4\pi)^2} \left(\frac{3}{2} y_t^2 - 32\pi\alpha_s \right) \left(\widetilde{X}_t + t \right) t \right] \\ [m_h^2]_{MSSM} &= M_Z^2 \cos^2 2\beta \left(1 - \frac{3}{8\pi^2} y_t^2 t \right) \\ &+ \frac{3}{4\pi^2} y_t^2 m_t^2 \left[\frac{1}{2} \widetilde{X}_t + t + \frac{1}{(4\pi)^2} \left(\frac{3}{2} y_t^2 - 32\pi\alpha_s \right) \left(\widetilde{X}_t + t \right) t \right] \end{split}$$

<ロ><一><一><一><一><一><一><一><一</td>3/14

Figure: Upper bounds on the lightest CP-even Higgs boson mass versus tan β , for $M_S = 1$ TeV (left panel) and $M_S = 200$ GeV (right panel). Maximum value of λ is used. Red lines correspond to the NMSSM, and blue lines correspond to the MSSM. The solid lines show the Higgs mass bounds for $\tilde{X}_t = 6$, while the dashed lines show the bounds with $\tilde{X}_t = 0$. The gray band shows the Higgs mass range of 126 ± 3 GeV.

One can incorporate the observed solar and atmospheric neutrino oscillations in the NMSSM by introducing an effective dimension six operator:

 $\frac{LLH_uH_uS}{M_6^2}$

		Q	Uc	D ^c	L	Ec	H _u	H _d	S
case I	<i>Z</i> ₃	1	ω^2	ω^2	1	ω^2	ω	ω	ω
case II	<i>Z</i> ₃	1	ω	1	ω^2	ω	ω^2	1	ω
case III	<i>Z</i> ₃	1	1	ω	ω	1	1	ω^2	ω

Table: Z_3 charge assignments of the NMSSM superfields corresponding to dimension six operators for neutrino masses. Here $\omega = e^{i2\pi/3}$.

The simplest way to generate this operator is to introduce the gauge singlet chiral superfields $(N_n^c + N_n)$ in the NMSSM.

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	<i>Z</i> ₃	<i>Z</i> ₂
N ^c _n	1	1	0	ω^2	_
N _n	1	1	0	ω	_

Table: Charge assignments of $N_n^c + N_n$ superfields. Here $\omega = e^{i2\pi/3}$.

The additional contribution to the lightest CP-even Higgs mass is given by

$$[m_{h}^{2}]_{N} = n \times \left[-M_{Z}^{2} \cos^{2} 2\beta \left(\frac{1}{8\pi^{2}} Y_{N}^{2} t_{N} \right) + \frac{1}{4\pi^{2}} Y_{N}^{4} v^{2} \sin^{2} \beta \left(\frac{1}{2} \widetilde{X}_{Y_{N}} + t_{N} \right) \right]$$

where

$$t_{N} = \log\left(\frac{M_{5}^{2} + M_{6}^{2}}{M_{6}^{2}}\right), \ \widetilde{X}_{Y_{N}} = \frac{4\widetilde{A}_{Y_{N}}^{2}\left(3M_{5}^{2} + 2M_{6}^{2}\right) - \widetilde{A}_{Y_{N}}^{4} - 8M_{5}^{2}M_{6}^{2} - 10M_{5}^{4}}{6\left(M_{5}^{2} + M_{6}^{2}\right)^{2}},$$

and

$$\widetilde{A}_{Y_N} = A_{Y_N} - Y_N \langle S \rangle \cot \beta$$

・ロ ・ ・ 一 ・ ・ 三 ト ・ 三 ト ・ 三 ・ つ Q (~
8/14

NMSSM+gauge singlet field

(a) Upper bounds on the lightest CP-even Higgs boson (b) Upper bounds on the lightest CP-even Higgs bomass versus tan β , with $M_S = 300$ GeV, $M_6 = 3$ TeV, son mass versus tan β , with $M_S = 300$ GeV, $M_6 = 3$ $\tilde{X}_{Y_N} = 4$. Maximum value of λ is used. Red lines TeV, $\tilde{X}_t = 6$, $\tilde{X}_{Y_N} = 4$, $Y_N = 0.7$ and $\lambda = 0.1$. correspond to NMSSM, while blue lines correspond to Red dashed line corresponds to NMSSM. Blue, purple NMSSM with one additional pair of $(N_n^c + N_n)$ singlets. and black solid lines (from bottom to top) correspond to Purple lines correspond to NMSSM with 3 additional pairs NMSSM+singlets with n=1, 2 and 3.

of $(N_n^c + N_n)$ singlets. In both cases $Y_N = 0.7$. The solid lines show the Higgs mass bounds with $\widetilde{X}_t = 6$, while the dashed lines show the bounds with $\widetilde{X}_t = 0$.

Another way for generating the dimension six operator is to introduce $SU(2)_L$ triplets $(\Delta_n^c + \Delta_n)$ with unit hypercharge.

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	<i>Z</i> ₃	<i>Z</i> ₂
Δ_1	1	3	1	1	+
$\overline{\Delta}_1$	1	3	-1	1	+
Δ_2	1	3	-1	ω	+
$\overline{\Delta}_2$	1	3	1	ω^2	+

Table: Charge assignments of $(\Delta_n + \overline{\Delta}_n)$ superfields, where n = 1, 2. $\omega = e^{i2\pi/3}$ and Z_2 is matter parity. The additional contributions to the NMSSM superpotential in this case contain the following terms

$$W \supset \qquad Y_{ij}(L_i \Delta_1 L_j) + Y_{H_u}(H_u \Delta_2 H_u) + \lambda_N S \operatorname{tr} \left[\overline{\Delta}_1 \overline{\Delta}_2 \right] \\ + m_1 \operatorname{tr} \left[\overline{\Delta}_1 \Delta_1 \right] + m_2 \operatorname{tr} \left[\overline{\Delta}_2 \Delta_2 \right]$$

The coupling $Y_H(H_u\Delta H_u)$ will generate a tree level contribution to the lightest CP-even Higgs boson mass given by

イロン イヨン イヨン イヨン 三日

11/14

$$\left[m_{h}^{2}\right]_{\Delta} = 4Y_{H_{u}}^{2}v^{2}\sin^{4}\beta$$

NMSSM+triplets

(C) Upper bounds on the lightest CP-even Higgs boson (d) Upper bounds on the lightest CP-even Higgs boson rass versus tan β , for $M_S = 200$ GeV, $\tilde{X}_t = 6$, $Y_{H_u} =$ son mass versus tan β , with $M_S = 200$ GeV, $\tilde{X}_t = 6$, 0.15, $m_1 = m_2 = 3$ TeV. Maximum value of λ is used. $m_1 = m_2 = 3$ TeV, and $\lambda = 0.3$. Red dashed line cor-Red dashed line corresponds to NMSSM, and the blue responds to the NMSSM, and blue and purple solid lines solid line corresponds to NMSSM + $(\Delta_n + \overline{\Delta}_n)$. correspond to NMSSM + $(\Delta_n + \overline{\Delta}_n)$, with $Y_{H_u} = 0.15$

and 0.2.

- We have considered extensions of the next-to-minimal supersymmetric model (NMSSM) in which the observed neutrino masses are generated through a TeV scale inverse seesaw mechanism.
- Introducing the gauge singlet superfields can yield a large contribution to the mass of the lightest CP-even Higgs.
- This new contribution makes it possible to have a 126 GeV Higgs with order of 300 GeV stop quarks mass and a broad range of tan β values.

The renormalizable superpotential terms involving only the new chiral superfields are given by

$$W \supset y_{ni}^{N} N_{n}^{c}(H_{u}L_{i}) + rac{\lambda_{N_{nm}}}{2} SN_{n}N_{m} + m_{nm}N_{n}^{c}N_{m}$$

Following the electroweak symmetry breaking, the neutrino Majorana mass matrix is generated:

$$m_{\nu} = rac{(Y_N^T Y_N) {v_u}^2}{M_6} imes rac{\lambda_N \langle S \rangle}{M_6}.$$

This implies that even if $Y_N \sim O(1)$ and $M_S \sim 1$ TeV, the correct mass scale for the light neutrinos can be reproduced by suitably adjusting λ_N .