

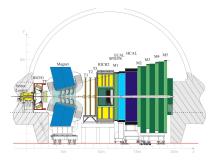
QCD and EW measurements in the forward region

Phenomenology Symposium 2013, Pittsburgh, USA

William Barter On behalf of the LHCb collaboration

University of Cambridge

6th May 2013


Contents

- Introduction
- 2 QCD Measurements at LHCb
 - Prompt Hadron Production
 - Energy Flow
- 3 EW measurements at LHCb
 - W & Z production
 - Comparison with ATLAS and CMS
 - Neutral Higgs Production

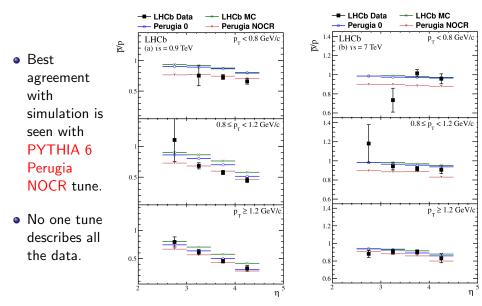
Introduction

- Single arm spectrometer, fully instrumented in forward region (1.9 < η < 4.9). Designed for flavour physics.
- Overlap with GPDs in 1.9 < η < 2.5, LHCb unique precision coverage in 2.5 < η < 4.9.
 - allows complementary studies in QCD and EW physics to ATLAS and CMS. The region of overlap also allows comparison of results.

- Excellent vertex resolution (VELO),
- Tracking detectors, ECAL, HCAL, Muon chambers,
- Ring Imaging Cherenkov (RICH) detectors for particle ID,
- Trigger on low p_T objects e.g. single lepton (p_T > 10 GeV).

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

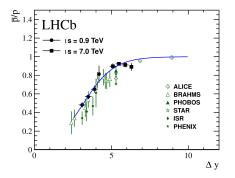
Prompt Hadron Production Ratios


Eur. Phys. J. C72 (2012) 2168

• LHCb has measured:

$$\blacktriangleright \ \frac{\bar{p}}{\bar{p}}, \ \frac{\pi^{-}}{\pi^{+}}, \ \frac{K^{-}}{K^{+}}, \ \frac{p + \bar{p}}{\pi^{+} + \pi^{-}}, \ \frac{K^{+} + K^{-}}{\pi^{+} + \pi^{-}}, \ \frac{p + \bar{p}}{K^{+} + K^{-}}.$$

- Probes hadronisation in the forward region:
 - essential for tuning MC generators.
- Focus here on $\frac{p}{p}$ this measurement also constrains models of baryon number transport.
- 0.3 nb⁻¹ at $\sqrt{s} = 0.9$ TeV and 1.8 nb⁻¹ at $\sqrt{s} = 7$ TeV.
- RICH detectors used to determine particle type. Main systematic comes from uncertainty on particle ID.


Prompt Hadron Production Ratios Eur. Phys. J. C72 (2012) 2168

Prompt Hadron Production Ratios

Eur. Phys. J. C72 (2012) 2168

• Measure distributions as a function of rapidity loss, $\Delta y = y_{\text{beam}} - y_{\text{particle}} \qquad [y_{\text{beam}} = 8.9(6.9) \text{ at } 7(0.9) \text{ TeV}]$

- LHCb results are high precision and complementary to ALICE measurements.
- Curve fitted to LHCb and ALICE data is Regge model of baryon transport.

Energy Flow in the forward region

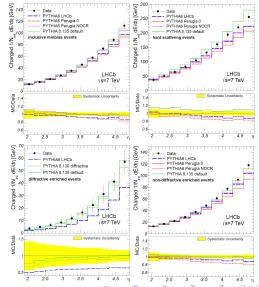
• Measure energy flow in low pile-up minimum bias data.

•
$$\int \mathcal{L} \cdot dt = 0.1 \text{ nb}^{-1}$$
, $\sqrt{s} = 7 \text{ TeV}$.

- Sensitive to overall event activity:
 - At LHC collision energies inelastic collisions of low x partons are sufficiently energetic to give significant final state production.
 - At low x parton densities are large, so we probe Multiple Parton Interactions (MPI) with energy flow measurements.
- Measure the energy flow differentially in bins of η :

$$\frac{1}{N_{\text{int}}}\frac{dE}{d\eta} = \frac{1}{N_{\text{int}}}\frac{1}{\Delta\eta} \left(\sum_{i=1}^{N_{\text{parts, }\eta}} E_{i,\eta}\right)$$

- Measure charged content of energy flow, correcting for neutral content from simulation.
- Dominant systematic: Model dependency of corrections from detector level to generator level.


• • = • • = •

arXiv: 1212.4755

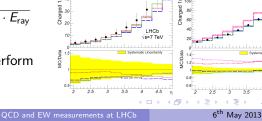
Energy Flow in the forward region

arXiv: 1212.4755

- Consider Energy flow in 4 different event classes:
 - Inclusive Minimum Bias ≥ 1 track with p > 2 GeV and $1.9 < \eta < 4.9$.
 - Hard Scattering
 - \geq 1 track with $p_{\rm T}$ > 3 GeV and 1.9 < η < 4.9.
 - Diffractive enriched no track within $-1.5 < \eta < -3.5$.
 - Non-diffractive ≥ 1 track within $-1.5 < \eta < -3.5.$
- PYTHIA8 describes the data best.

W. Barter (University of Cambridge)

6th May 2013 8 / 17

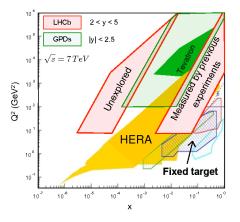

Energy Flow in the forward region

- We consider the same events, and same categories, but now compare to different predictions.
- Can use energy flow measurements to test cosmic ray MC - which can be related to collider predictions by changing frame:
 - $\sqrt{s_{\rm LHC}} = 2E_{\rm beam}$ • $\sqrt{s_{\text{Cosmic}}} \sim \sqrt{2 \cdot m \cdot E_{\text{ray}}}$

Charged

MC/Data

 EPOS and SIBYLL perform best.

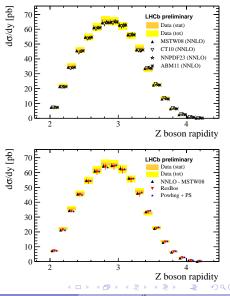


I HCh s=7 Te\

arXiv: 1212.4755

W & Z production in the forward region

 Main theory uncertainty on benchmark Standard Model Processes comes from uncertainties in parton distribution functions (PDFs).

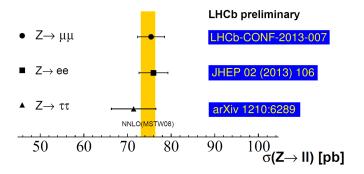


- LHCb is sensitive to previously unexplored region of low x-high Q² phase space.
- Can use measurements at LHCb to constrain PDFs.
- PDF uncertainties largely cancel in some cross-section ratios can also probe the standard model.

Z production in the forward region

• 1 fb⁻¹ data at $\sqrt{s} = 7$ TeV.

- Consider dilepton final states (right hand plots for dimuon).
- Fiducial Acceptance:
 - ▶ p_T(ℓ) > 20GeV,
 - ▶ 2.0 < η(ℓ) < 4.5,</p>
 - $60 < M(\ell \ell) < 120 \text{ GeV}.$
- 99.7% purity in $\mu\mu$ final state.
- Efficiencies taken from data using tag and probe methods.
- Dominant systematic from luminosity (3.5%).

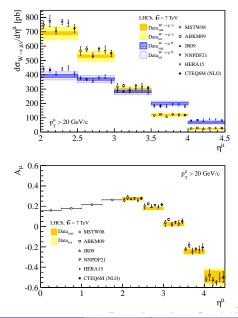


LHCb-CONF-2013-007

QCD and EW measurements at LHCb

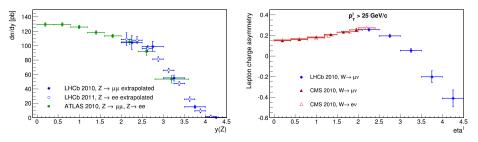
Z production in the forward region

LHCb-CONF-2013-007


• Recent $Z \rightarrow \mu\mu$ result agrees well with other dilepton results.

• Very good agreement with NNLO predictions.

W production in the forward region

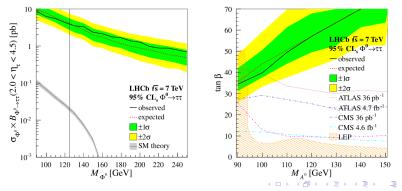


- 37 pb⁻¹ data at $\sqrt{s} = 7$ TeV.
- Fiducial Acceptance:
 - ▶ p_T(µ) > 20GeV,
 - ▶ 2.0 < η(μ) < 4.5,</p>
- Lepton charge asymmetry, $A_{\mu} = \frac{\sigma(W^{+}) - \sigma(W^{-})}{\sigma(W^{+}) + \sigma(W^{-})}$
- Many experimental uncertainties cancel in A_μ so we can perform a high precision measurement.

Comparison with ATLAS and CMS

- Where necessary, extrapolate LHCb results as a function of (pseudo)rapidity, to account for different ATLAS and CMS fiducial acceptances.
- Dominant uncertainty in extrapolation tends to be from scale variation at low η , and PDF uncertainties at high η .

- See very good agreement in region of overlap between ATLAS, CMS and LHCb results.
- LHCb extends the GPD results into a previously unexplored region of phase space which can be used to constrain PDFs.


W. Barter (University of Cambridge)

QCD and EW measurements at LHCb

6th May 2013 14 / 17

Limits on Neutral Higgs Production

- Extension to $Z \rightarrow \tau \tau$ analysis (arXiv 1210:6289).
- Treat Z $\rightarrow \tau \tau$ as background to some general neutral Higgs process: $\Phi^0 \rightarrow \tau \tau$.
- $\bullet~\text{No}~\Phi^0$ excess seen set a model-independent limit on cross-section.
- We can express this limit as constraints on MSSM parameters.
- Measurement also adds strong constraints on models where forward production is favoured.

Other results

• Measurement of the cross-section for Z \rightarrow ee production in pp collisions at $\sqrt{s}=7~{\rm TeV}$

• Exclusive J/ ψ and ψ (2S) production in pp collisions at $\sqrt{s} = 7$ TeV

arXiv: 1301.7084

JHEP 02 (2013) 106

• Measurement of charged particle multiplicities in pp collisions at $\sqrt{s}=7~{\rm TeV}$ in the forward region

• First analysis of the pPb pilot run data with LHCb

LHCb-CONF-2012-034

• Measurement of jet production in Z⁰/ $\gamma^* \to \mu\mu$ events at LHCb in $\sqrt{s} = 7$ TeV pp collisions

LHCb-CONF-2012-016

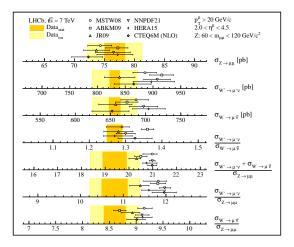
• Search for Higgs-like bosons decaying into long-lived exotic particles

LHCb-CONF-2012-014

• Inclusive low mass Drell-Yan production in the forward region at $\sqrt{s} = 7$ TeV LHCb-CONF-2012-013

Summary

- LHCb occupies a unique region of phase space at the LHC, allowing complementary measurements to ATLAS, CMS and ALICE.
- QCD measurements at LHCb provide insight into a range of processes, like baryon number transport and energy flow. These measurements can be used to tune MC generators.
- EW measurements at LHCb can be used to:
 - constrain PDFs in previously unexplored regions.
 - set limits in SUSY parameter space.
 - test the standard model using ratios of benchmark processes which are very well predicted.
- LHCb results show good agreement with Standard Model predictions and measurements by the GPDs.


BACKUP SLIDES

-

3

Summary of EW results in the Muon Channels

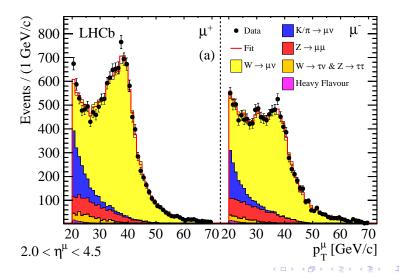
JHEP 06 (2012) 058

6th May 2013 19 / 17

3

(人間) トイヨト イヨト

$W \to \mu \nu$

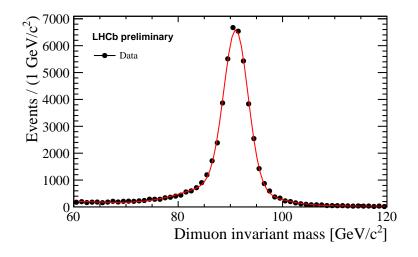

Contributions to the systematic uncertainty for the total W cross-sections.

Source	$\Delta \sigma_{W^+ \to \mu^+ \nu}$ (%)	$\Delta \sigma_{W^- \to \mu^- \bar{\nu}}$ (%)
Signal purity	± 1.2	± 0.9
Template shape (fit)	± 0.9	± 1.0
Efficiency (trigger, tracking, muon id)	± 2.2	± 2.0
Additional selection	± 1.8	± 1.7
FSR correction	± 0.01	± 0.02
Total	± 3.2	± 2.9
Luminosity	± 3.5	± 3.5

-2

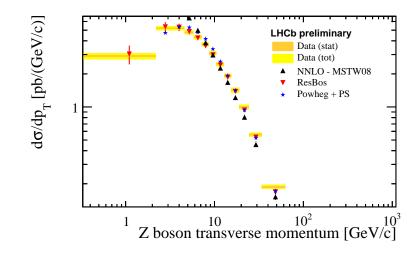
イロト イポト イヨト イヨト

 $W
ightarrow \mu
u$ JHEP 06 (2012) 058

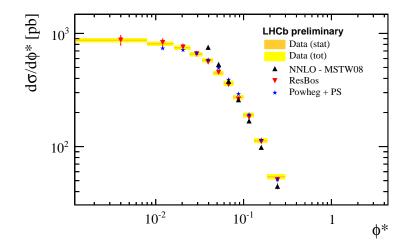

6th May 2013 21 / 17

Source	Uncertainty (%)	Between bins
Tracking efficiency	±1.1	mostly correlated
GEC efficiency	± 1.1	correlated
Muon-id efficiency	± 0.5	mostly correlated
Muon trigger efficiency	± 0.5	mostly correlated
Magnet polarity	± 1.6	uncorrelated
Bin-to-bin migrations	± 0.7	uncorrelated
FSR correction	± 0.2	uncorrelated
Signal purity	± 0.03	correlated
Total	± 2.5	
Luminosity	± 3.5	correlated

Contributions to the systematic uncertainty for the total Z cross-sections.


-2

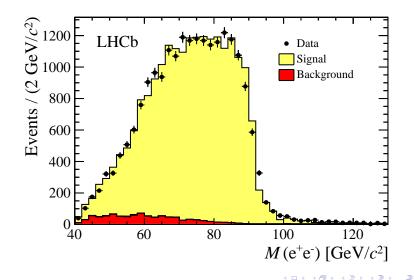
<ロ> (日) (日) (日) (日) (日)


3

- < ∃ →

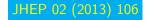
3

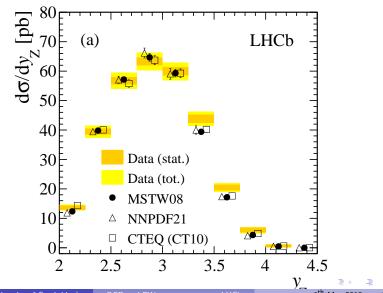
- ∢ ≣ →

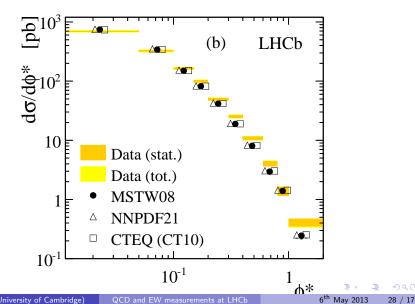

- < ∃ →

▲ @ ▶ < ∃ ▶</p>

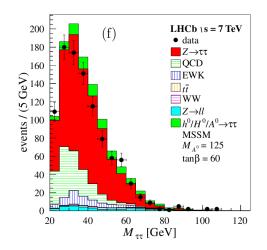
3


 $Z \rightarrow ee$


JHEP 02 (2013) 106


6th May 2013 26 / 17

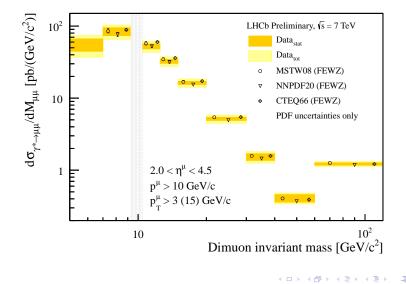
 $Z \rightarrow ee$



 $Z \rightarrow ee$

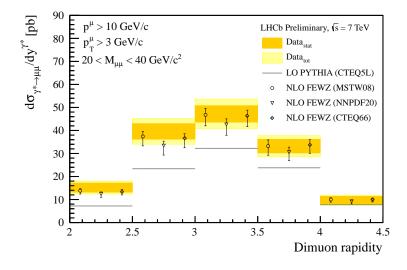
W. Barter (University of Cambridge) QCD and EW measurements at LHCb $\Phi^0 \to \tau \tau$

arXiv: 1304.2591

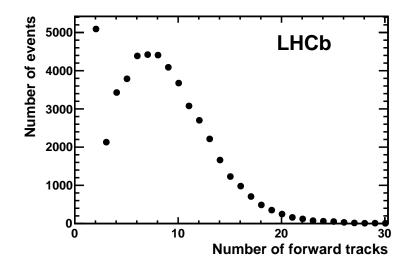

6th May 2013 29 / 17

3

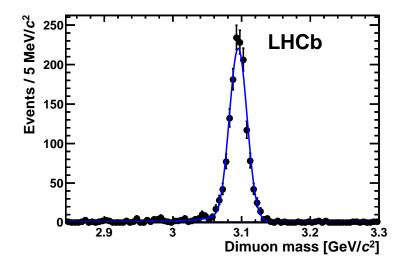
< ∃→

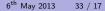

Drell-Yan Production

Drell-Yan Production

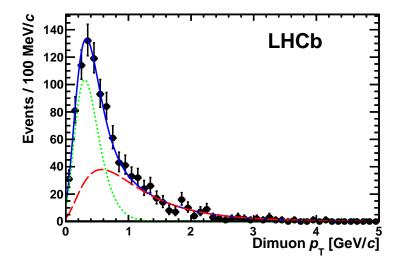


W. Barter (University of Cambridge) QCD and EW measurements at LHCb

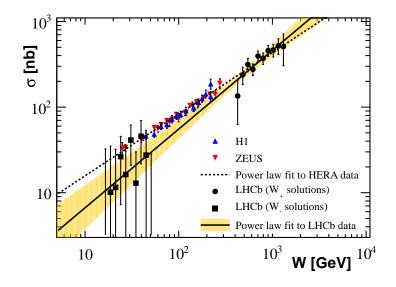

6th May 2013 31 / 17

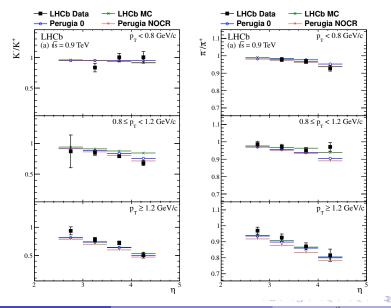

Exclusive Production

arXiv: 1301.7084



arXiv: 1301.7084

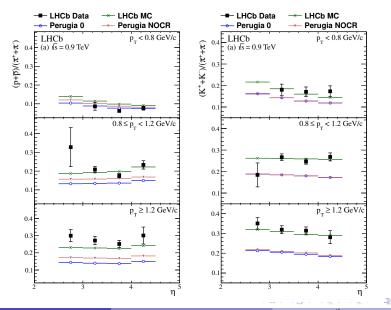




6th May 2013 34 / 17

	\bar{p}/p	K^-/K^+	π^-/π^+
PID	3.4 - 26.4	2.0 - 15.8	0.6 - 2.7
Cross-sections	0.3 - 1.8	0.3 - 0.7	< 0.1 - 0.2
Detector material	0.2 - 0.9	0.1 - 0.4	< 0.1 - 0.2
Ghosts	< 0.1 - 0.4	< 0.1 - 0.1	< 0.1
Tracking asymmetry	0.5	0.5	0.5
Non-prompt	< 0.1 - 0.2	< 0.1 - 0.1	< 0.1 - 0.1
Total	3.5 - 26.5	2.1 - 15.8	0.8 - 2.8

Eur. Phys. J. C72 (2012) 2168

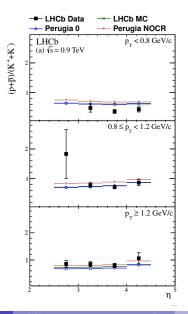


W. Barter (University of Cambridge)

QCD and EW measurements at LHCb

6th May 2013 37 / 17

Eur. Phys. J. C72 (2012) 2168



W. Barter (University of Cambridge)

QCD and EW measurements at LHCb

6th May 2013 38 / 17

W. Barter (University of Cambridge)

QCD and EW measurements at LHCb

6th May 2013 39 / 17

3

< ∃⇒

Forward Energy Flow

Relative systematic uncertainties (in percent) affecting the energy flow measurements for all event classes. The ranges indicate the variation of the uncertainty as a function of η .

Source of	Inclusive	Hard	Diffractive	Non-diffractive
uncertainty	minbias	scattering	enriched	enriched
Model uncertainty on	0.6 - 9.2	0.7 - 4.1	16 - 43	0.7 - 8.6
correction factors				
Selection cuts	1.0 - 4.9	2.7 - 8.8	0.9 - 2.8	1.1 - 5.0
Tracking efficiency	3	3	3	3
Multiple tracks	1	1	1	1
Spurious tracks	0.3 - 1.2	0.4 - 1.7	0.2 - 0.7	0.3 - 1.2
Magnet polarity			2.6 - 7.7	
Residual pile-up	1.7	1.7	1.7	1.7
Total on $F_{\text{char},\eta}$	3.9 - 11	4.9 - 10	16 - 43	4.0 - 11
Variation of $R_{\text{gen},\eta}$	0.8 - 6.1	0.7 - 2.9	1.5 - 23	0.9 - 5.5
and k_{η} factors				
Photon efficiency	1.4 - 1.6	1.2 - 1.3	1.3 - 2.3	1.3 - 1.6
ECAL miscalibration	< 1	< 1	< 1	< 1
Total on $F_{\text{total},\eta}$	4.4 - 13	5.4 - 11	17 - 49	4.4 - 12

3

arXiv: 1212.4755

Double Charm Production

LHCb

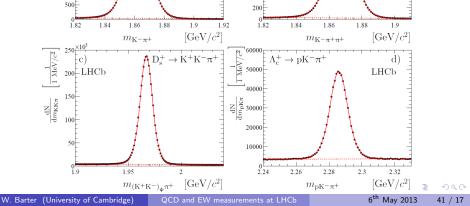
4000×10³

3500^{⊨a})

3000F

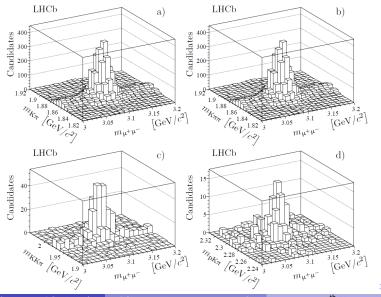
2500 $\frac{dN}{dm_{K\pi}}$

2000[†]


1500E

1000

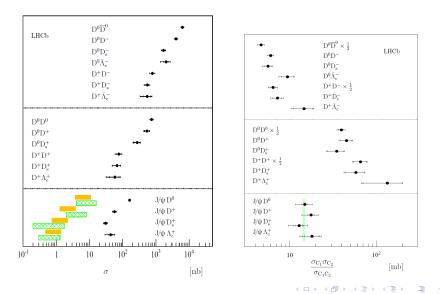
 $\left[\frac{1}{1 \text{ MeV}/c^2}\right]$


2000×10³ $\rightarrow {\rm K}^-\pi^+\pi^+$ $D^0 \rightarrow K^- \pi^+$ $_{1800} \not\models \mathrm{D^{+}}$ b MeV/ LHCb 1600 1400 1200 $\frac{dN}{dmK\pi\pi}$ 1000 800 600 400 200 1.86 1.88 1.9 1.92 1.82 1.84 1.86 1.88 1.9 $[\text{GeV}/c^2]$ $[\text{GeV}/c^2]$ $m_{\mathrm{K}^-\pi^+\pi^+}$

JHEP 06 (2012) 141

Double Charm Production

JHEP 06 (2012) 141

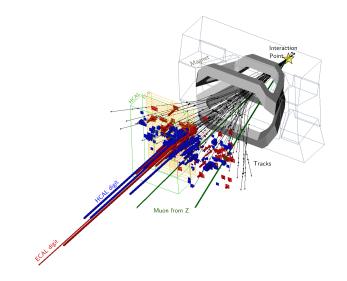

W. Barter (University of Cambridge)

QCD and EW measurements at LHC

6th May 2013 42 / 17

Double Charm Production

JHEP 06 (2012) 141



W. Barter (University of Cambridge)

QCD and EW measurements at LHCb

6th May 2013 43 / 17

Event display

6th May 2013 44 / 17

< ≣ >

4

・ロト ・回ト ・ヨト