Charm Mixing and CP Violation at LHCb

PHENO Symposium, University of Pittsburgh, PA, USA 6-8 May 2013

Nick Torr on behalf of the LHCb Collaboration

University of Oxford

2/15

CP violation in SCS charm decays

- Singly Cabbibo suppressed (SCS) charm decays → theatre for studying CPV
- Manifests due to interference between tree and penguin processes
- Direct CPV predicted to be small in SM [Phys. Rev. D75:036008, 2007]
- Large signals could be a sign of new physics in loop diagrams
- Can access direct CPV through asymmetry measurements

$$A_{CP} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

- Detection and production effects can induce fake asymmetries to measured value
- Difference of A_{raw} can be approximated to,

 $\Delta A_{CP} = A_{CP}(D \to f_1) - A_{CP}(D \to f_2) \approx A_{raw}(D \to f_1) - A_{raw}(D \to f_2)$

Cancels production/detection asymmetries common to both final states

Today I will present 3 analyses: 2 direct *CPV* searches in SCS decays, 1 mixing measurement

CP violation in $D^+ \rightarrow \phi \pi^+$ and $D^+_s \rightarrow K^0_S \pi^+$

- Quasi 2-body decay with large $\mathcal{BF}\approx 2.65\times 10^{-3}$
- ϕ dominates narrow region of $D^+ \rightarrow K^+ K^- \pi^+$ Dalitz plot
- Contributions from S-wave and other resonances
- Theoretical predictions are challenging pseudoscaler → vector decay

• Measure ΔA_{CP} from difference in A_{raw} for $D^+ \to \phi \pi^+$ and $D^+ \to K_S^0 \pi^+$

 $\Delta A_{CP}(D^+ \to \phi \pi^+) = A_{raw}(D^+ \to \phi \pi^+) - A_{raw}(D^+ \to K^0_S \pi^+) + A_{CP}(K^0/\bar{K}^0)$

• Also extract ΔA_{CP} from SCS $D^+_s o K^0_S \pi^+$ and CF $D^+_s o \phi \pi^+$

 $\Delta A_{CP}(D_s^+ \to K_S^0 \pi^+) = A_{raw}(D_s^+ \to K_S^0 \pi^+) - A_{raw}(D_s^+ \to \phi \pi^+) + A_{CP}(K^0/\bar{K}^0)$

- Small effect of CPV in K_S^0 decay accounted for in $A_{CP}(K^0/\bar{K}^0)$ term
- Assume CPV in D⁺ from CF/DCS interference negligible

Results from 1.0 fb⁻¹ recorded in 2011: $\Delta A_{CP}(D^+ \to \phi \pi^+) = (-0.04 \pm 0.14(stat.) \pm 0.13(sys.))\%$ $\Delta A_{CP}(D_s^+ \to K_S^0 \pi^+) = (-0.61 \pm 0.83(stat.) \pm 0.13(sys.))\%$ [arXiv:1303.4906v1] submitted to JHEP

CP violation in $D^+ \rightarrow \phi \pi^+$ and $D^+_s \rightarrow K^0_S \pi^+$

- Improve sensitivity to of CPV in $D^+ \rightarrow \phi \pi^+$ region
- Average out asymmetry from variation in strong phase about ϕ resonance

$$A_{CP|S} = \frac{1}{2}[(A_{raw}^{\mathsf{A}} + A_{raw}^{\mathsf{C}}) - (A_{raw}^{\mathsf{B}} + A_{raw}^{\mathsf{D}})]$$

- No need to account for D^+ production asymmetry
- Cancels affects that change sign across ϕ band

$$A_{CP|S} = (-0.18 \pm 0.17(stat.) \pm 0.18(sys.))\%$$

• No evidence for *CP* violation is seen [arXiv:1303.4906v1]

$\Delta A_{\rm CP}$ from $D^0 ightarrow h^+ h^-$ decays

- Measure ΔA_{CP} between $D^0 o K^+ K^-$ and $D^0 o \pi^+ \pi^-$ decays
- Decay time dependent asymmetry for D⁰ decays to a CP eigenstate

$$A_{CP}(f;t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)} = a_{CP}^{dir}(f) + \frac{t}{\tau} a_{CP}^{ind}$$

• Assuming equal decay time acceptance for K^+K^- and $\pi^+\pi^-$

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = [a_{CP}^{\mathsf{dir}}(K^+K^-) - a_{CP}^{\mathsf{dir}}(\pi^+\pi^-)] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\mathsf{aind}}$$

- Insensitive to indirect CP violation \rightarrow universal to both final states
- Two datasets:
 - Prompt: $D^{*+}
 ightarrow (D^0
 ightarrow h^+ h^-) \pi^+_{
 m soft}$ Update
 - Secondary: $B \to (D^0 \to h^+ h^-) \mu X$ New result!
- In both cases assume:

$$\Delta A_{CP} = A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-}) \approx A_{raw}(K^{+}K^{-}) - A_{raw}(\pi^{+}\pi^{-})$$

- But, treatment of production and detection asymmetries different for each
- Both use 1.0 fb⁻¹ of data collected in 2011
- Little overlap between prompt and secondary data (statistics and systematics)

$\Delta A_{\rm CP}$ from $D^0 \rightarrow h^+ h^-$ decays: Prompt

- Previous result from LHCb, $\Delta A_{CP} = (-0.82 \pm 0.21(stat.) \pm 0.11(sys.))\%$ [Phys. Rev. Lett. 108 (2012) 111602]
- Sparked a flurry of work by you guys we like to keep you on your toes!
- Update now includes full 1.0 fb⁻¹ from 2011

Raw asymmetry given by,

 $A_{raw}(f) = A_{CP}(f) + A_D(f) + A_D(\pi_{soft}^+) + A_P(D^{*+})$

- Detection asymmetry of spin-0 decay to self-conjugate state, $A_D(f) = 0$
- $A_D(\pi_{\text{soft}}^+)$ and $A_P(D^{*+})$ depend on D^{*+} kinematics and therefore selection
- Re-weight $|p|, p_T$ and ϕ distributions to account for difference in decay kinematics and selection criteria of $\pi\pi$ and KK final states

$\Delta A_{\rm CP}$ from $D^0 \rightarrow h^+ h^-$ decays: Secondary

- All previous measurements of ΔA_{CP} are from D^{*+} decays
- Previous result strongly motivated a cross-check \rightarrow use secondary charm

Raw asymmetry can be approximated to,

$$A_{raw} = A_{CP} + A_D^{\mu} + A_P^{B}$$

- A_P^B is the b/\bar{b} production asymmetry, independent of the final state particles
- Re-weight D^0 (p_T , η) distributions to account for differences in A_D^{μ} (muon detection asymmetry) between the $\pi\pi$ and *KK* final states

$\Delta A_{\rm CP}$ from $D^0 ightarrow h^+ h^-$ decays

Prompt: $\Delta A_{CP} = (-0.34 \pm 0.15(stat.) \pm 0.10(sys.))\%$ [CERN-LHCb-CONF-2013-003]

Secondary: $\Delta A_{CP} = (+0.49 \pm 0.30(stat.) \pm 0.14(sys.))\%$ [LHCb-PAPER-2013-003]

Both consistent with no CP violation hypothesis

(ロ) (同) (目) (日) (日) (の)

10/15

Mixing from WS/RS $D^0 \rightarrow K^{\mp}\pi^{\pm}$ decays

- Mixing is well established in the Standard Model (K, B(B_s) and D)
- Charm mixing is known to be small $(x \approx y \approx 1\%)$
- Previous evidence from accumulation of many results [Link to HFAG references]

Mixing characterised by dimensionless parameters

$$x = \frac{\Delta m}{\Gamma} = \frac{M_1 - M_2}{\Gamma}, \qquad y = \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}, \qquad \Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

• Measure time-dependent ratio of $D^0 o K^+\pi^-$ (WS) to $D^0 o K^-\pi^+$ (RS)

- RS: Cabbibo favoured (CF) amplitude only
- WS: Doubly Cabbibo suppressed (DCS) amplitude, mixing + CF decay
- Assuming small mixing and negligible CP violation,

$$R(t)pprox R_D + \sqrt{R_D}y'rac{t}{ au} + rac{x'^2+y'^2}{4}\left(rac{t}{ au}
ight)^2$$

Mixing parameters rotated by strong phase difference between CF and DCS

$$x' = x\cos(\delta) + y\sin(\delta)$$
 $y' = y\cos(\delta) - x\sin(\delta)$

Mixing from WS/RS $D^0 \rightarrow K^{\mp} \pi^{\pm}$ decays

[Phys. Rev. Lett. 110, 101802 (2013)]

- Use 1.0 fb⁻¹ of data collected in 2011
- Prompt $D^{*+}
 ightarrow (D^0
 ightarrow K^{\mp} \pi^{\pm}) \pi^+_{
 m soft}$, $\pi^+_{
 m soft}$ tags flavour of D
- Mis-reconstructed charm from secondary B decays can cause bias in decay time
- Systematic effect on x' and y' found to be smaller than statistical error

Observation of $D^0 - \overline{D}^0$ mixing

- Limit of no mixing expect ratio of WS/RS to be a flat line as a function of time
- Clear deviation from no-mixing fit
- Observation of D⁰ D
 ⁰ mixing! [Phys. Rev. Lett. 110, 101802 (2013)]
- No mixing excluded to 9.1 σ
- CDF has 6.1 σ observation
 [Paolo Maestro's slides from Beauty 2013]
- Both observations of D mixing!

 $x'^{2} = (-0.9 \pm 1.3(stat. + sys.)) \times 10^{-4}$ $y'^{2} = (7.2 \pm 2.4(stat. + sys.)) \times 10^{-3}$

 $R_D = (3.52 \pm 0.15(stat. + sys.)) \times 10^{-3}$ [Phys. Rev. Lett. 110, 101802 (2013)]

World averages

HFAG averages March 2012

HFAG averages April 2013

• Future results from LHCb will improve our understanding even more

Summary

Results from time-integrated CP violation measurements:

- $\Delta A_{CP}(D^+ \to \phi \pi^+) = (-0.04 \pm 0.14(stat.) \pm 0.13(sys.))\%$
- $A_{CP|S}(D^+ \to \phi \pi^+) = (-0.18 \pm 0.17(stat.) \pm 0.18(sys.))\%$
- $\Delta A_{CP}(D_s^+ \to K_S^0 \pi^+) = (-0.61 \pm 0.83(\text{stat.}) \pm 0.13(\text{sys.}))\%$
- ΔA_{CP} from $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ decays:

Prompt: $\Delta A_{CP} = (-0.34 \pm 0.15(stat.) \pm 0.10(sys.))\%$

Secondary: $\Delta A_{CP} = (0.49 \pm 0.30(stat.) \pm 0.14(sys.))\%$

Results from charm mixing:

$$\begin{array}{l} x'^2 = (-0.9 \pm 1.3(\textit{stat.} + \textit{sys.})) \times 10^{-4} & y'^2 = (7.2 \pm 2.4(\textit{stat.} + \textit{sys.})) \times 10^{-3} \\ R_D = (3.52 \pm 0.15(\textit{stat.} + \textit{sys.})) \times 10^{-3} \end{array}$$

- No evidence for CP violation from 1.0 fb⁻¹ at LHCb
- Another 2 fb⁻¹ on tape!
- 9.1 σ observation of mixing in charm!
- Even more charm coming after 2015

Expect many more charm results from LHCb in the future!

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ → ● ♡ へ ○ 15/15

Backup

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Interpretation of ΔA_{CP}

- Central value is considerably closer to zero than previous result
- Series of 1-2 σ changes that had a large cumulative effect e.g.
 - (1) Larger dataset
 - (2) Improvements to the detector calibration and reconstruction software
 - (3) Difference between the analysis techniques
 - (4) Constrain π_{soft}^+ to originate from PV
- (1) + (2):
 - 15% K^+K^- and 14% $\pi^+\pi^-$ events no longer selected with new redo
 - Remaining 85%: $\Delta A_{CP,old} = (-0.80 \pm (stat.)0.23)\%: \Delta A_{CP,new} = (-0.78 \pm (stat.)0.23)\%$
 - Additional 17% K^+K^- and 34% $\pi^+\pi^-$ events selected with new reco $\Delta A_{CP} = (-0.55 \pm (stat.)0.21)\%$
 - Disjoint samples were found to be consistent with a statistical fluctuation
 - Additional 400 pb⁻¹ with old technique $\Delta A_{CP} = (-0.28 \pm (stat.)0.26)\%$
- (3) + (4):
 - Kinematic binning \rightarrow re-weighting = no effect on ΔA_{CP}
 - Constrain π_{soft}^+ to PV: $\Delta A_{CP,no} = (-0.45 \pm (stat.)0.17)\%: \Delta A_{CP,yes} = (-0.34 \pm (stat.)0.15)\%$
 - Resolution affect alone = 0.05%
 - Correlation with events where π^+_{soft} has large IP = 0.08%

Constraining π_{soft} to the Primary Vertex

• Useful variable in suppressing many types of background is δm ,

$$\delta m = m(D^{*+}) - m(D^0) - m(\pi^+_{soft})$$

- LHCb has a extremely powerful decay tree re-fitting tool, DecayTreeFitter [Nucl.Instrum.Meth. A552 (2005) 566-575]
- Can use this to constrain π⁺_{soft} to originate from the PV
- Improves δm resolution by a factor ≈ 2.5

 δm distributions for $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$ from simulated events before and after applying the π^+_{soft} conatraint

- Excellent track reconstruction from VELO, TT and T stations
- $\frac{\Delta p}{p} = 0.4\%$ @ 5 GeV/c to 0.6% @ 100 GeV/c
- $\sigma(IP) = 20 \ \mu m$ for high p_T tracks

- Calorimeter system consists of ECAL and HCAL
- $\sigma(\text{ECAL}) = 1\% + 10\% / \sqrt{E(\text{GeV})}$

