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The pMSSM

● A framework for investigating the MSSM, 
imposing only experimentally motivated 
constraints on the full parameter space

● Start from random points in ~19-dimensional 
pMSSM space with R-parity and CP 
conservation, taking Minimal Flavor Violation

● Select points which correspond to spectra 
surviving existing experimental constraints

● See if corners are left unexplored
●  Explore complementarity of different analyses



   

LHC searches
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Which of these models are excluded by the LHC?
Simulate SUSY events, reproduce analyses

Full model set



   

LHC searches
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Light squarks and gluinos in compressed spectra often 
survive; detector simulation clearly important

After searches



   

Higgs LHC phenomenology
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Neutralino LSP123 GeV < m
h
 < 127 GeV

h → ZZ and h → γγ signals strongly correlated
Why? Most deviations in Higgs BR come from 

slowly decoupling corrections to h → bb



   

Event simulation

● How well can existing LHC searches probe the 
pMSSM? Need to go beyond mSUGRA, 
simplified model limits

● Generate events with PYTHIA, scale to NLO 
with Prospino

● An experimentally-approved public fast 
simulator would be great, but for now theorists 
use independent tools such as PGS and 
Delphes to obtain a reasonable approximation

● Today: our experience with PGS



   

PGS

● Evolved out of CDF/D0 simulation SHW for 
Snowmass 2001, due to John Conway and 
others

● Can call PYTHIA, HERWIG, ISAJET, ALPGEN
● Or run on existing events (LHE or STDHEP)
● Package exists for MadGraph to take parton 

level events, pass them through Pythia, and 
implement detector simulation with PGS

● Default PGS output is in LHC Olympics 
format, suitable for implementing analysis



   

PGS

● Generate tracks
● Simulate energy deposition in ECAL and 

HCAL
● Object reconstruction

– Choice of jet algorithms including anti-k
T

– EM fraction discriminates between e/γ and jets

– Isolation requirements

● Many parameters can be easily changed with 
input detector card, e.g. calorimeter energy 
resolution, tracker magnetic field



   

Validation

ATLAS benchmark point
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m
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Shape, normalization reproduced reasonably well
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ATLAS 1.04/fb jets + MET
2 jets, 3 jets, 4 jets, 4 jets',
high mass, average

Agreement with  ATLAS gets worse in some 
situations, e.g. 2 jets + MET with heavy squarks

Validation
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Validation

● Total number of events = cross section × 
acceptance × efficiency × luminosity

● Can separate out effects of cross section 
calculation versus detector simulation using 
quoted ATLAS cross section values for 
benchmark models in HepData

● We use Pythia + Prospino + PGS, while 
ATLAS uses Herwig++ + Prospino + Geant4

● Efficiency comparison indicates how PGS 
performs relative to full ATLAS simulation
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ATLAS 1.04/fb jets + MET
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Cross section is doing something....



   

Validation
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...but acceptance is off as well!
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ATLAS 1.04/fb jets + MET
2 jets, 3 jets, 4 jets, 4 jets',
high mass, average
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b-tagging

● Much interest in 2012 in searches requiring 
final state b-jets, driven by considerations of 
naturalness and lack of signals of new physics

● We implemented all relevant ATLAS searches 
involving third generation squarks to 
investigate the capability of the LHC to 
discover the most natural pMSSM spectra

● Important to reliably reproduce various 
b-tagging algorithms at different operating 
efficiencies, particularly for signal regions 
involving multiple b-jets



   

b-tagging
● PGS: truth tagger 

looks for type of 
hardest parton near 
jet, followed by 
applying efficiencies 
and rejection factors 
that are based on 
CDF

● We put in our own 
functions from fits to 
ATLAS results

→ 400 GeV stops

MV1 algorithm, 60% efficiency

ATLAS
Our fit



   

Summary

● Studying the pMSSM requires a large amount 
of detector simulation, given the enormous 
parameter space and the importance of 
different experimental searches

● PGS generally approximates detectors well, 
though agreement with experiment gets worse 
in some tricky regions

● Some steps need updating for realistic 
simulation, such as b-tagging



   

Backup



   

h → γγ in the pMSSM

Higgs mass (GeV)

R
γγ

Can study observables such as signals in 
various Higgs channels from SUSY

Neutralino LSP

4.5%
14.8%



   

LHC searches

● 0.7% of the model set is excluded by the 7 TeV vanilla SUSY 
searches but not by the corresponding 8 TeV analyses (tighter 
cuts)

● Going to 25/fb at 8 TeV doesn't gain much!

● Fractions of models killed are ~independent of Higgs mass cut

Neutralino LSP



   

LHC searches

Dark matter and LHC searches for SUSY 
complement each other
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Neutralino LSP



   

LHC searches

Dark matter and LHC searches for SUSY 
complement each other

Lightest neutralino (GeV)

Neutralino LSP
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LHC searches

Higgs mass cut Is approximately independent of LHC 
and DM searches

Lightest neutralino (GeV)
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Higgs LHC phenomenology
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Other modes behave the same way because of decoupling
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Higgs LHC phenomenology
R

bb

R
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bb production is anti-correlated with other decay modes

Neutralino LSP123 GeV < m
h
 < 127 GeV



   

Higgs LHC phenomenology

Γ(h → bb)
pMSSM/SM

SUSY corrections to bb width reduce other branching ratios!

Neutralino LSP 

R
γγ

123 GeV < m
h
 < 127 GeV



   

h → bb decoupling

● As sparticles get heavier, SUSY corrections to 
h → bb width usually decouple quickly

● However, in certain limits, e.g. near-maximal 
sbottom mixing with large tan β, the 
decoupling happens very slowly, and 
corrections can be large

● Large resulting corrections push up bb width, 
decreasing all other branching ratios 
accordingly



   

h → bb decoupling
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Neutralino LSP 123 GeV < m
h
 < 127 GeV



   

Higgs LHC phenomenology
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Can also look at vector boson fusion production WW → h → γγ

Neutralino LSP123 GeV < m
h
 < 127 GeV



   

Fine-tuning

● Measure sensitivity of electroweak symmetry 
breaking scale to each pMSSM parameter p

i 
Barbieri and Giudice, Nucl.Phys. B306 (1988) 63

● A
i
 = ∂(log M

Z

2) / ∂(log p
i
), 1 ≤ i ≤ 19

● Most sensitive to  and stop mass parameters, 
but gluino mass enters at higher order

● Take maximum of all A
i
 to get fine-tuning 



   

Fine-tuning

Neutralino LSP
     with m

h
 = 125 ± 2 GeV

Gravitino LSP
     with m

h
 = 125 ± 2 GeV

models with Higgs near 125 GeV 
are more fine-tuned
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Features of models with low FT

● Look at models with ∆ < 100, Higgs near 125 
GeV, and passing all existing constraints

● 9 (0) such models in neutralino (gravitino) LSP 
model set

● Light higgsinos, usually light winos
● Moderately light 3rd generation squarks, 

heavy 1st/2nd generation squarks
● Gluino is constrained by LHC searches, but 

not naturalness at this level of fine-tuning



   

Sample spectrum

Many possible cascades for light stops and sbottoms



   

What happens if the LSP makes up 
all the dark matter?

● Goal: get small set of benchmark models with 
right Higgs mass and relic density

● Require m
h
 = 126 ± 1 GeV, neutralino LSP 

relic density within 1σ of WMAP, LHC 
constraints satisfied

● 24 models, representing many collider and DM 
scenarios (thanks to Michael Peskin)

● Sfermion coannihilation, well-tempered 
neutralino, resonant annihilation all 
represented; compressed spectra common



   

Bino-squark coannihilation

Compressed spectrum makes squarks difficult to see



   

Bino-stop coannihilation

Now, 1st/2nd generation squarks are decoupled
Very challenging to see stops and sbottoms



   

Well-tempered neutralino

All states below 1 TeV are uncolored
Consider studying with linear collider



   

“Goldilocks” Higgsino

Higgsino at 1 TeV gives right relic density
Heavier Higgsino LSPs typically require coannihilations



   

A funnel

Bino at 1013 GeV, A at 2043 GeV → resonant annihilation

A



   

LHC searches
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standard SUSY searches

3rd generation
multi-leptons

HSCP, disappearing tracks
B

s
 → µµ, φ → ττ

m
h
 cut

Non-MET searches are orthogonal to MET searches
Cutting on Higgs mass affects gluino distribution

Neutralino LSP



   

LHC searches
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full set
standard SUSY searches

3rd generation
multi-leptons

HSCP, disappearing tracks
B

s
 → µµ, φ → ττ

m
h
 cut

“Vanilla” SUSY searches do well at seeing light 
squarks, more specific searches are less successful

Neutralino LSP



   

LHC searches

Searches for stop/sbottoms work to some extent, but 
some models have tricky cascade decays
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