Anomalous QGC in the effective lagrangian framework

Oscar Éboli
IPhT/Saclay and Universidade de São Paulo

collaborators:MC.Gonzalez-Garcia, JK.Mizukoshi,SF.Novaes,SM.Lietti

December 12, 2012

I. Basic facts

> What we know:
fixed by $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$ gauge symmetry

$>$ Quartic couplings play in important role: $\mathbf{W}_{\mathrm{L}}^{+} \mathbf{W}_{\mathrm{L}}^{-} \rightarrow \mathbf{W}_{\mathrm{L}}^{+} \mathbf{W}_{\mathbf{L}}^{-}$

- J=0 partial wave

$$
\mathbf{A}=\mathbf{A}_{4} \frac{\mathbf{E}^{4}}{\mathbf{M}_{\mathbf{W}}^{4}}+\mathbf{A}_{2} \frac{\mathbf{E}^{2}}{\mathbf{M}_{\mathbf{W}}^{\mathbf{2}}}+\cdots
$$

- In the SM
$\mathbf{A}_{4} \propto \mathbf{g} \mathbf{w} \mathbf{w w w}-\mathbf{g}_{\mathbf{W} \mathbf{w z}}^{\mathbf{2}}-\mathbf{g}_{\mathbf{W} \mathbf{w} \gamma}^{\mathbf{2}} \equiv 0$
- H takes part into $\mathbf{A}_{\mathbf{2}}=\mathbf{0}$

$>$ Deviations from SM prediction lead to growth of the cross section

VBF
$\frac{\mathbf{d} \sigma}{\mathbf{d M}_{\mathbf{W W}}}(\mathbf{W W} \rightarrow \mathbf{W W})$ for $\mathbf{g W W W W}_{\mathbf{W}}=1.01 \mathrm{~g}_{\mathbf{W} \mathbf{W W W}}^{\text {SM }}$

2. Effective lagrangians

$>$ Effective lagrangians describe residual effects of new physics
> It is a bottom-up approach to study departures from the SM
> It should contain all terms compatible with

- low energy particle content
- symmetries
$>$ It should be invariant under local $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$
> Linear realization of the symmetry if the Higgs belongs to an SU(2) doublet
> The low energy can be written as

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{f_{6 j}}{\Lambda^{2}} \mathcal{O}_{6 j}+\frac{f_{8 j}}{\Lambda^{4}} \mathcal{O}_{8 j}+\cdots
$$

$>$ Operators connected by the eqs. of motion are equivalent, so we must choose a basis. [e.g. Arrt hep-ph/9304230]
$>$ Nice feature: symmetry relates different processes.
$>$ For instance, to describe the Higgs interactions we can use [arXiv:|2||.4580]
$\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right)<W_{h \gamma} \quad h Z Z \quad h W^{+} W^{-} \quad$ (Higgs)
$>$ At the lowest order, TGCs are described by three operators
$\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right)$
$\left(D_{\mu} \Phi\right)^{\dagger} \hat{B}^{\mu \nu}\left(D_{\nu} \Phi\right)$
$\operatorname{Tr}\left[\hat{W}^{\mu \nu} \hat{W}_{\nu \beta} \hat{W}^{\beta}{ }_{\mu}\right]$
> dimension-six operators also introduce anomalous QGC
$\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right)$

$$
\Longrightarrow \gamma \gamma W^{+} W^{-} \gamma Z W^{+} W^{-} Z Z W^{+} W^{-} W^{+} W^{-} W^{+} W^{-}
$$

$\operatorname{Tr}\left[\hat{W}^{\mu \nu} \hat{W}_{\nu \beta} \hat{W}^{\beta}{ }_{\mu}\right]$
> TGC and QGC come together in dimension-six operators.

There are drawbacks to limiting ourselves to dim-6 operators

- TGC will be better measured than QGC so it will be hard to get the information on QGC
- dimension-six operators do not generate the QGCs:

$$
\gamma \gamma \gamma \gamma \gamma \gamma \gamma Z \quad \gamma \gamma Z Z \quad \gamma Z Z Z \quad Z Z Z Z
$$

- dimension-six operators are generated at loop level, so they might not be dominant depending on the new physics scale

We propose a different strategy: [hep-ph/06066 | 8]
$>$ We use effective lagrangians as "straw man" to target QGCs
$>$ We consider effective operators that do not generate TGCs to assess possible departures from SM predictions
$>$ For that, we need to consider dimension-eight operators
$>$ There are many (18) operators satisfying this requirement, eg,

$$
\begin{aligned}
\mathcal{L}_{S, 0} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} D_{\nu} \Phi\right] \times\left[\left(D^{\mu} \Phi\right)^{\dagger} D^{\nu} \Phi\right] \\
\mathcal{L}_{S, 1} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi\right] \times\left[\left(D_{\nu} \Phi\right)^{\dagger} D^{\nu} \Phi\right] \\
\mathcal{L}_{\text {quartic }} & =F_{S 0} \mathcal{L}_{S, 0}+F_{S 1} \mathcal{L}_{S, 1}
\end{aligned}
$$

these operators lead to lorentz structures without momenta of the gauge bosons

$$
\begin{array}{ll}
\mathcal{O}_{0}^{\mathbf{W W}}=\mathbf{g}^{\alpha \beta} \mathbf{g}^{\gamma \delta}\left[\mathbf{W}_{\alpha}^{+} \mathbf{W}_{\beta}^{-} \mathbf{W}_{\gamma}^{+} \mathbf{W}_{\delta}^{-}\right], & \mathcal{O}_{1}^{\mathbf{W W}}=\mathbf{g}^{\alpha \beta} \mathbf{g}^{\gamma \delta}\left[\mathbf{W}_{\alpha}^{+} \mathbf{W}_{\beta}^{+} \mathbf{W}_{\gamma}^{-} \mathbf{W}_{\delta}^{-}\right], \\
\mathcal{O}_{0}^{\mathbf{w Z}}=\mathbf{g}^{\alpha \beta} \mathbf{g}^{\gamma \delta}\left[\mathbf{W}_{\alpha}^{+} \mathbf{Z}_{\beta} \mathbf{W}_{\gamma}^{-} \mathbf{Z}_{\delta}\right], & \mathcal{O}_{1}^{\mathbf{W Z}}=\mathbf{g}^{\alpha \beta} \mathbf{g}^{\gamma \delta}\left[\mathbf{W}_{\alpha}^{+} \mathbf{W}_{\beta}^{-} \mathbf{Z}_{\gamma} \mathbf{Z}_{\delta}\right], \\
\mathcal{O}_{0}^{\mathbf{Z Z}}=\mathcal{O}_{1}^{\mathbf{Z Z}}=\mathcal{O}^{\mathbf{Z Z}}=\mathbf{g}^{\alpha \beta} \mathbf{g}^{\gamma \delta}\left[\mathbf{Z}_{\alpha} \mathbf{Z}_{\beta} \mathbf{Z}_{\gamma} \mathbf{Z}_{\delta}\right],
\end{array}
$$

$>\ln$ the SM

$$
c_{0, S M}^{\mathrm{WW}}=-c_{1, \mathrm{SM}}^{\mathrm{WW}}=\frac{\mathbf{2}}{\mathbf{c}_{\mathrm{W}}^{2}} \mathbf{c}_{0, \mathrm{SM}}^{\mathrm{WZ}}=-\frac{2}{c_{W}^{2}} \mathbf{c}_{1, \mathrm{SM}}^{\mathrm{WZ}}=\mathrm{g}^{2} \quad c_{\mathrm{SM}}^{\mathrm{ZZ}}=0
$$

$>$ The anomalous contributions to these Lorentz structures are

$$
\Delta c_{i}^{W W}=\frac{g^{2} v^{4} f_{i}}{8 \Lambda^{4}} \quad \Delta c_{i}^{W Z}=\frac{g^{2} v^{4} f_{i}}{16 c_{W}^{2} \Lambda^{4}} \quad \Delta c^{Z Z}=\frac{g^{2} v^{2}\left(f_{0}+f_{1}\right)}{32 c_{W}^{4} \Lambda^{4}}
$$

$>$ the connection between different processes is kept > Example: integrating out a "spin-I state" leads to

$$
\frac{\mathrm{f}_{0}}{\Lambda^{4}}=-\frac{\mathrm{f}_{1}}{\Lambda^{4}}=\frac{12 \pi}{\mathrm{M}_{\rho}^{4}} \frac{\boldsymbol{\Gamma}_{\rho}}{\mathrm{M}_{\rho}}
$$

$>$ Connection with earlier works using non-linear operators [pp: hep-ph/ 9805229; e+e-: hep-ph/97 I | 499 and hep-ph/97083 I0]

$$
\begin{gathered}
\mathcal{L}_{4}^{(4)}=\alpha_{4}\left[\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}_{\nu}\right)\right]^{\mathbf{2}} \quad \mathcal{L}_{\mathbf{5}}^{(4)}=\alpha_{\mathbf{5}}\left[\operatorname{Tr}\left(\mathbf{V}_{\mu} \mathbf{V}^{\mu}\right)\right]^{\mathbf{2}} \\
\mathbf{V}_{\mu} \equiv\left(\mathbf{D}_{\mu} \boldsymbol{\Sigma}\right) \boldsymbol{\Sigma}^{\dagger} \quad \text { with } \quad \mathbf{D}_{\mu} \boldsymbol{\Sigma} \equiv \partial_{\mu} \boldsymbol{\Sigma}+\mathbf{i g} \frac{\tau^{\mathrm{a}}}{\mathbf{2}} \mathbf{W}_{\mu}^{\mathrm{a}} \boldsymbol{\Sigma}-\mathbf{i g}^{\prime} \boldsymbol{\Sigma} \frac{\tau^{\mathbf{3}}}{2} \mathbf{B}_{\mu}
\end{gathered}
$$

the relation between the linear and non-linear coefficients is

$$
\alpha_{4}=\frac{\mathrm{v}^{4} \mathrm{f}_{0}}{8 \boldsymbol{\Lambda}^{4}} \quad \alpha_{5}=\frac{\mathrm{v}^{4} \mathrm{f}_{1}}{8 \boldsymbol{\Lambda}^{4}}
$$

$>$ the dimension-8 operator list also includes

$$
\begin{aligned}
\mathcal{L}_{M, 0} & =\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\beta} \Phi\right] \\
\mathcal{L}_{M, 1} & =\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\nu \beta}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\mu} \Phi\right] \\
\mathcal{L}_{M, 2} & =\left[B_{\mu \nu} B^{\mu \nu}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\beta} \Phi\right] \\
\mathcal{L}_{M, 3} & =\left[B_{\mu \nu} B^{\nu \beta}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\mu} \Phi\right] \\
\mathcal{L}_{M, 4} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}_{\beta \nu} D^{\mu} \Phi\right] \times B^{\beta \nu} \\
\mathcal{L}_{M, 5} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}_{\beta \nu} D^{\nu} \Phi\right] \times B^{\beta \mu} \\
\mathcal{L}_{M, 6} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}_{\beta \nu} \hat{W}^{\beta \nu} D^{\mu} \Phi\right] \\
\mathcal{L}_{M, 7} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}_{\beta \nu} \hat{W}^{\beta \mu} D^{\nu} \Phi\right]
\end{aligned}
$$

$$
\mathcal{L}_{T, 0}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \times \operatorname{Tr}\left[\hat{W}_{\alpha \beta} \hat{W}^{\alpha \beta}\right]
$$

$$
\mathcal{L}_{T, 1}=\operatorname{Tr}\left[\hat{W}_{\alpha \nu} \hat{W}^{\mu \beta}\right] \times \operatorname{Tr}\left[\hat{W}_{\mu \beta} \hat{W}^{\alpha \nu}\right]
$$

$$
\mathcal{L}_{T, 2}=\operatorname{Tr}\left[\hat{W}_{\alpha \mu} \hat{W}^{\mu \beta}\right] \times \operatorname{Tr}\left[\hat{W}_{\beta \nu} \hat{W}^{\nu \alpha}\right]
$$

$$
\mathcal{L}_{T, 5}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \times B_{\alpha \beta} B^{\alpha \beta}
$$

$$
\mathcal{L}_{T, 6}=\operatorname{Tr}\left[\hat{W}_{\alpha \nu} \hat{W}^{\mu \beta}\right] \times B_{\mu \beta} B^{\alpha \nu}
$$

$$
\mathcal{L}_{T, 7}=\operatorname{Tr}\left[\hat{W}_{\alpha \mu} \hat{W}^{\mu \beta}\right] \times B_{\beta \nu} B^{\nu \alpha}
$$

$$
\mathcal{L}_{T, 8}=B_{\mu \nu} B^{\mu \nu} B_{\alpha \beta} B^{\alpha \beta}
$$

$$
\mathcal{L}_{T, 9}=B_{\alpha \mu} B^{\mu \beta} B_{\beta \nu} B^{\nu \alpha}
$$

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZAA	ZZAA	ZAAA
$\mathcal{L}_{S, 0,}, \mathcal{L}_{S, 1}$	X	X	X	O	O	O		
$\mathcal{L}_{M, 0}, \mathcal{L}_{M, 1,} \mathcal{L}_{M, 6}, \mathcal{L}_{M, 7}$	X	X	X	X	X	X	O	O
$\mathcal{L}_{M, 2}, \mathcal{L}_{M, 3}, \mathcal{L}_{M, 4}, \mathcal{L}_{M, 5}$	O	X	X	X	X	X	X	O
$\mathcal{L}_{T, 0,0}, \mathcal{L}_{T, 1}, \mathcal{L}_{T, 2}$	X	X	X	X	X	X	X	X
$\mathcal{L}_{T, 5} \mathcal{L}_{T, 6} \mathcal{L}_{T, 7}$	O	X	X	X	X	X	X	X

$>$ QGCs with two photons: let's consider M2 and M3

$$
\mathcal{L}_{M, 2}=\left[B_{\mu \nu} B^{\mu \nu}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\beta} \Phi\right] \quad \mathcal{L}_{M, 3}=\left[B_{\mu \nu} B^{\nu \beta}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\mu} \Phi\right]
$$

> In the unitary gauge the induced QGCs are

$$
\mathcal{C}_{M, 2}=\frac{f_{M, 2}}{\Lambda^{4}}\left[c_{w}^{2} F_{\mu \nu} F^{\mu \nu}+s_{w}^{2} Z_{\mu \nu} Z^{\mu \nu}-2 s_{w} c_{w} F_{\mu \nu} Z^{\mu \nu}\right]\left[\frac{g^{2} v^{2}}{4} W_{\beta}^{+} W^{-\beta}+\frac{g^{2} v^{2}}{8 c_{w}^{2}} Z_{\beta} Z^{\beta}\right]
$$

$\mathcal{L}_{M, 3}=\frac{f_{M, 2}}{\Lambda^{4}}\left[c_{w}^{2} F_{\mu \nu} F^{\nu \beta}+s_{w}^{2} Z_{\mu \nu} Z^{\nu \beta}-2 s_{w} c_{w} F_{\nu \beta} Z^{\nu \beta}\right]\left[\frac{g^{2} v^{2}}{4} W_{\beta}^{+} W^{-\mu}+\frac{g^{2} v^{2}}{8 c_{w}} Z_{\beta} Z^{\mu}\right]$
Considering just the 2 photons couplings the relation to previous works (theory, experiment, PDG) is

$$
\frac{f_{M, 2}}{\Lambda^{4}}=-\frac{a_{0}}{\Lambda^{2}} \frac{s_{w}^{2}}{2 v^{2} c_{w}^{2}} \quad \frac{f_{M, 3}}{\Lambda^{4}}=-\frac{a_{c}}{\Lambda^{2}} \frac{s_{w}^{2}}{2 v^{2} c_{w}^{2}}
$$

[similar results for MO, MI]

3. Closing remarks

> LHC and ILC can improve the knowledge on QCGs
>Presently the best limits come from oblique corrections and unitarity
> After the discovery of the "Higgs" it is natural to use effective lagrangians where the symmetry is realized linearly
> dimension-8 operators provide a good framework to test QCG. Tools are available http://feynrules.irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling
$>$ Question: how well do we need to know the TGCs in order to extract limits on QCGs?

