The Impact of *B* Physics Observables on SUSY Fits

Sven Heinemeyer, IFCA (Santander)

CERN, 12/2007

based on hep-ph/0706.0652, hep-ph/0707.3447, hep-ph/0709.0098 [Buchmüller, Cavanaugh, De Roeck, Ellis, Hahn, S.H., Isidori, Olive, Paradisi, Ronga, Weber, Weiglein]

- 1. Introduction
- 2. Impact of BPO on CMSSM fits
- **3**. Impact of BPO on M_h fit in the CMSSM
- 4. Impact and prospects of BPO on NUHM fits
- 5. Conclusions

1. Introduction

Let's assume that low-energy SUSY is realized in Nature (But you can play the same game with any NP model!)

What do we know about the SUSY mass scale?

- 1. Coupling constant unification $\Rightarrow M_{SUSY} \approx 1 \text{ TeV}$
- 2. Solution for the Hierarchy problem $\Rightarrow M_{SUSY} \lesssim 1 \text{ TeV}$
- 3. Indirect hints from existing data?
 - Electroweak precision observables (EWPO) ?
 - *B* physics observables (BPO) ?
 - Cold dark matter (CDM) ?

\Rightarrow combination of EWPO, BPO, CDM ?

Precision Observables (POs):

Comparison of electro-weak precision observables with theory:

EW Precision data:
$$M_W, \sin^2 \theta_{\rm eff}, a_{\mu}$$
Theory:
SM, MSSM , ... \downarrow

Test of theory at quantum level: Sensitivity to loop corrections

Very high accuracy of measurements and theoretical predictions needed

- Which model fits better?
- Does the prediction of a model contradict the experimental data?

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

Within the SM: fit for the last unknown parameter: M_H^{SM}

Indirect hints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?
 - \Rightarrow combination of EWPO, BPO, CDM ?

Indirect hints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?

 \Rightarrow combination of EWPO, BPO, CDM ?

EWPO M_W : information on $m_{\tilde{t}}$, $m_{\tilde{b}}$ or M_A , $\tan \beta$ or ... EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \to s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or ...

Indirect hints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?

 \Rightarrow combination of EWPO, BPO, CDM ?

EWPO M_W : information on $m_{\tilde{t}}$, $m_{\tilde{b}}$ or M_A , $\tan \beta$ or ... EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or ...

 \Rightarrow combination makes only sense if all parameters are connected! \Rightarrow GUT based models, . . .

Lightest SUSY particle (LSP) is the lightest neutralino

The models: 1.) CMSSM (or mSUGRA):

The models: 2.) NUHM: (Non-universal Higgs mass model)

Assumption:

no unification of scalar fermion and scalar Higgs parameters at the GUT scale

 \Rightarrow effectively M_A and μ free parameters at the EW scale

 \Rightarrow particle spectra from renormalization group running to weak scale

Lightest SUSY particle (LSP) is the lightest neutralino

 \Rightarrow possible: M_A -tan β planes in agreement with CDM :-)

2. Impact of BPO on CMSSM fits

[J. Ellis, S.H., K. Olive, A.M. Weber, G. Weiglein '07]

What do we know about the SUSY mass scale?

- 1. Coupling constant unification $\Rightarrow M_{SUSY} \approx 1 \text{ TeV}$
- 2. Solution for the Hierarchy problem $\Rightarrow M_{SUSY} \lesssim 1 \text{ TeV}$
- 3. Indirect hints from existing data?
 - Focus on CMSSM

small number of free parameters

- hard constraint: LSP gives right amount of cold dark matter CMSSM: only thin strips allowed in the $m_{1/2}$ – m_0 plane
- Use existing data of M_W , $\sin^2 heta_{
 m eff}$, Γ_Z , $(g-2)_\mu$, M_h

 $\mathsf{BR}(b \to s\gamma)$, $\mathsf{BR}(B_s \to \mu^+ \mu^-)$, $\mathsf{BR}(B_u \to \tau \nu_{\tau})$, ΔM_{B_s}

 $\Rightarrow \chi^2$ fit with these observables

 \Rightarrow best fit values for masses, couplings, ...

Results: CMSSM: EWPO alone

 \Rightarrow preference for relatively small $m_{1/2}$

Results: CMSSM: BPO alone

 \Rightarrow preference for relatively large $m_{1/2}$

 $\mathsf{BR}(B_u \to \tau \nu_{\tau})$: CMSSM/SM

ΔM_{B_s} : CMSSM/SM

Problem of BPO: not precise enough yet (getting better)

 $BR(B_s \rightarrow \mu^+ \mu^-)$: CMSSM

Problem of BPO: not precise enough yet (partial exception)

 $\mathsf{BR}(b \rightarrow s\gamma)$: CMSSM

Results: CMSSM: everything combined

⇒ preference for somewhat smallish $m_{1/2}$ – but with a little tension ⇒ still a very good fit!

Results: CMSSM: prediction for M_h

 \Rightarrow preference for $M_h \sim 115 \text{ GeV} (\text{LEP} \dots)$

 \Rightarrow much "better" than in the SM

3. Impact of BPO on M_h in the CMSSM

[Buchmüller, Cavanaugh, de Roeck, S.H., Isidori, Paradisi, Ronga, Weber, Weiglein '07]

Main idea:

- combine all electroweak precision data as in the SM
- combine B physics observables
- include SM parameters with their errors: m_t , ...
- scan over the full CMSSM parameter space
- \Rightarrow preferred CMSSM parameters
- \Rightarrow preferred M_h values
- \Rightarrow LHC/ILC reach

```
Most important:
Produce better graphics! :-)
```


Variable			$ \mathbf{O}^{\text{meas}}$ - $\mathbf{O}^{\text{fit}} /\sigma^{\text{meas}}$			
	Measurement	Fit	0 1 2	3		
$\Delta \alpha_{had}^{(5)}(m_{Z})$	0.02758 ± 0.00035	0.02774				
m _z [GeV]	91.1875 ± 0.0021	91.1873				
Γ _Z [GeV]	$2.4952 {\pm} 0.0023$	2.4952				
σ_{had}^0 [nb]	41.540 ± 0.037	41.486				
R ₁	$\textbf{20.767} \pm \textbf{0.025}$	20.744				
A ^{0,1} fb	0.01714 ± 0.00095	0.01641				
$A_l(P_{\tau})$	0.1465 ± 0.0032	0.1479				
R _b	0.21629 ± 0.00066	0.21613				
R _c	0.1721 ± 0.0030	0.1722				
$\mathbf{A_{fb}^{0,b}}$	0.0992 ± 0.0016	0.1037				
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0741				
A _b	$\textbf{0.923} {\pm} \textbf{0.020}$	0.935				
A _c	$\boldsymbol{0.670 \pm 0.027}$	0.668				
A _l (SLD)	0.1513 ± 0.0021	0.1479				
$\sin^2 \theta_{eff}^{lept}(\mathbf{Q}_{fb})$	0.2324 ± 0.0012	0.2314				
m _w [GeV]	$\textbf{80.398} \pm \textbf{0.025}$	80.382				
m _t [GeV]	$\textbf{170.9} \pm \textbf{1.8}$	170.8				
$R(b{\rightarrow}s\gamma)$	$\textbf{1.13} \pm \textbf{0.12}$	1.12				
$B_s \rightarrow \mu \mu \ [\times 10^{-8}]$	< 8.00	0.33	N/A (upper limi	t)		
$\Delta a_{\mu} [\times 10^{-9}]$	$\pmb{2.95 \pm 0.87}$	2.95				
$\Omega \mathbf{h}^2$	$\textbf{0.113}{\pm}~\textbf{0.009}$	0.113				

CNACCNA

SM

			$ \mathbf{O}^{\text{meas}}-\mathbf{O}^{\text{fit}} /\sigma^{\text{meas}}$			
Variable	Measurement	Fit	0 1	2	3	
$\Delta \alpha_{had}^{(5)}(m_{Z})$	0.02758 ± 0.00035	0.02768				
m _z [GeV]	91.1875 ± 0.0021	91.1875				
$\Gamma_{\mathbf{Z}}$ [GeV]	$\bf 2.4952 \pm 0.0023$	2.4957				
σ_{had}^0 [nb]	$\textbf{41.540} \pm \textbf{0.037}$	41.477				
R ₁	$\textbf{20.767} \pm \textbf{0.025}$	20.744				
A ^{0,1} fb	0.01714 ± 0.00095	0.01645				
$\mathbf{A}_{\mathbf{l}}(\mathbf{P}_{\tau})$	0.1465 ± 0.0032	0.1481				
R _b	0.21629 ± 0.00066	0.21586				
R _c	0.1721 ± 0.0030	0.1722				
$\mathbf{A_{fb}^{0,b}}$	0.0992 ± 0.0016	0.1038				
A ^{0,c} _{fb}	$\boldsymbol{0.0707 \pm 0.0035}$	0.0742				
A _b	$\boldsymbol{0.923 \pm 0.020}$	0.935				
A _c	$\textbf{0.670} \pm \textbf{0.027}$	0.668				
A _l (SLD)	0.1513 ± 0.0021	0.1481		•		
$\sin^2 \theta_{\rm eff}^{\rm lept}(\mathbf{Q}_{\rm fb})$	0.2324 ± 0.0012	0.2314				
m _w [GeV]	$\textbf{80.398} \pm \textbf{0.025}$	80.374				
m _t [GeV]	$\textbf{170.9} \pm \textbf{1.8}$	171.3				
$\Gamma_{\mathbf{W}}$ [GeV]	$\textbf{2.140} \pm \textbf{0.060}$	2.091				

 \Rightarrow note the new observables: BR($b \rightarrow s\gamma$), [BR($B_s \rightarrow \mu^+ \mu^-$)], $(g-2)_{\mu}$, CDM

		0	
			$ \mathbf{O}^{\text{meas}}-\mathbf{O}^{\text{fit}} /\sigma^{\text{meas}}$
Variable	Measurement	Fit	0 1 2 3
$\Delta \alpha_{had}^{(5)}(\mathbf{m}_{z})$	0.02758 ± 0.00035	0.02774	
m _z [GeV]	91.1875 ± 0.0021	91.1873	
Γ _Z [GeV]	2.4952 ± 0.0023	2.4952	
σ_{had}^0 [nb]	$\textbf{41.540} \pm \textbf{0.037}$	41.486	
R ₁	$\textbf{20.767} \pm \textbf{0.025}$	20.744	
A ^{0,1} fb	0.01714 ± 0.00095	0.01641	
$\mathbf{A}_{\mathbf{l}}(\mathbf{P}_{\tau})$	0.1465 ± 0.0032	0.1479	
R _b	0.21629 ± 0.00066	0.21613	
R _c	0.1721 ± 0.0030	0.1722	
$\mathbf{A_{fb}^{0,b}}$	$\textbf{0.0992} \pm \textbf{0.0016}$	0.1037	
A ^{0,c} _{fb}	$\textbf{0.0707} \pm \textbf{0.0035}$	0.0741	
$\mathbf{A}_{\mathbf{b}}$	$\textbf{0.923}{\pm}~\textbf{0.020}$	0.935	
A _c	$\textbf{0.670} \pm \textbf{0.027}$	0.668	
A _l (SLD)	0.1513 ± 0.0021	0.1479	
$\sin^2 \theta_{eff}^{lept}(\mathbf{Q}_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	$\textbf{80.398} \pm \textbf{0.025}$	80.382	
m _t [GeV]	$\textbf{170.9} \pm \textbf{1.8}$	170.8	
$\mathbf{R}(\mathbf{b}{\rightarrow}\mathbf{s}\gamma)$	$\textbf{1.13} {\pm} \textbf{0.12}$	1.12	
$B_s \rightarrow \mu \mu \ [\times 10^{-8}]$	< 8.00	0.33	N/A (upper limit)
$\Delta a_{\mu} [\times 10^{-9}]$	$\pmb{2.95 \pm 0.87}$	2.95	
Ωh^2	$\textbf{0.113}{\pm}\textbf{0.009}$	0.113	

CMSSM

SM

			$ \mathbf{O}^{\text{meas}}-\mathbf{O}^{\text{fit}} /\sigma^{\text{meas}}$			
Variable	Measurement	Fit	0 1	2		
$\Delta \alpha_{had}^{(5)}(m_{Z})$	0.02758 ± 0.00035	0.02768				
m _z [GeV]	91.1875 ± 0.0021	91.1875				
$\Gamma_{\mathbf{Z}}$ [GeV]	2.4952 ± 0.0023	2.4957	•			
σ_{had}^0 [nb]	$\textbf{41.540} \pm \textbf{0.037}$	41.477		-		
R ₁	$\textbf{20.767} \pm \textbf{0.025}$	20.744				
$\mathbf{A_{fb}^{0,l}}$	0.01714 ± 0.00095	0.01645				
$A_l(P_{\tau})$	0.1465 ± 0.0032	0.1481				
R _b	0.21629 ± 0.00066	0.21586				
R _c	0.1721 ± 0.0030	0.1722				
$A_{fb}^{0,b}$	0.0992 ± 0.0016	0.1038				
$A_{fb}^{0,c}$	0.0707 ± 0.0035	0.0742				
A _b	$\boldsymbol{0.923 \pm 0.020}$	0.935				
A _c	$\boldsymbol{0.670 \pm 0.027}$	0.668				
A _l (SLD)	0.1513 ± 0.0021	0.1481		•		
$\sin^2 \theta_{eff}^{lept}(\mathbf{Q}_{fb})$	0.2324 ± 0.0012	0.2314				
m _w [GeV]	80.398 ± 0.025	80.374				
m _t [GeV]	170.9 ± 1.8	171.3				
$\Gamma_{\mathbf{W}}$ [GeV]	$\textbf{2.140} \pm \textbf{0.060}$	2.091				

Probabilities: 24% / 20%

15% / 15% (incl. / excl. M_h)

 $M_h = 110^{+8}_{-10} \,(\text{exp}) \pm 3 (\text{theo}) \,\,\text{GeV}$

CMSSM (despite its simplicity) is better than the SM

Impact of $BR(b \rightarrow s\gamma)$: \Rightarrow green curve (preliminary!)

 \Rightarrow impact visible, but not decisive (location of minimum)

Connection to high P_T physics: LHC (CMS) reach with 1 fb⁻¹: [CMS '07]

Connection to high P_T physics: LHC (CMS) reach with 1 fb⁻¹:

[CMS '07]

4. Impact and prospects of BPO on NUHM fits

[J. Ellis, S.H., K. Olive, A.M. Weber, G. Weiglein '07][J. Ellis, T. Hahn, S.H., K. Olive, G. Weiglein '07]

NUHM: (Non-universal Higgs mass model)

 \Rightarrow besides the CMSSM parameters

 M_A and μ

Assumption:

no unification of scalar fermion and scalar Higgs parameters at the GUT scale

 \Rightarrow effectively M_A and μ free parameters at the EW scale

 \Rightarrow particle spectra from renormalization group running to weak scale

Lightest SUSY particle (LSP) is the lightest neutralino

 \Rightarrow possible: M_A -tan β planes in agreement with CDM :-)

⇒ good χ^2 (M_W , sin² θ_{eff} , Γ_Z , M_h , (g-2) $_{\mu}$, BR($b \rightarrow s\gamma$) and other BPO) ⇒ larger regions o.k.

 \Rightarrow so far mostly "mild" impact

 \Rightarrow so far mostly "mild" impact

 $BR(B_s \to \mu^+ \mu^-) = 1.0(0.2) \times 10^{-7} \text{ [, LHCb]}$ $BR(b \to s\gamma) = 4.0(3.0) \times 10^{-4}$ $BR(B_u \to \tau \nu_{\tau}) = 0.9(0.7)$

⇒ Improvement in precision for BPO is needed! Improvement in precision for BPO will help a lot!

5. Conclusinos

- EWPO and BPO and CDM can give valuable information on the underlying Lagrangian
- Combination makes only sense in GUT based models
- <u>CMSSM</u>: (free parameters: $m_{1/2}$, m_0 , A_0 , tan β)
 - slight tension between EWPO and BPO
 BPO not yet precise enough . . .
 - EWPO fit for M_h similar to "blue band" in the SM, but including BR $(b \rightarrow s\gamma)$, $(g-2)_{\mu}$ and CDM: $\Rightarrow M_h = 110^{+8}_{-10} \pm 3 \text{ GeV}$ \Rightarrow impact of BPO still small
- <u>NUHM</u>: (effectively M_A and μ as additional free parameters)
 - $M_A-\tan\beta$ planes in agreement with CDM possible
 - impact of BPO so far "mild"
 - good future prospects , especially for LHCb