Conclusions

$B-\bar{B}$ mixing and the MSSM Higgs Sector at large $\tan\beta$

Martin Gorbahn

3. December 2007

in collaboration with S. Jäger, U. Nierste, and S. Trine

00	Higgs Contributions to ΔM	OO	Numerics and Results	Conclusions
Conten	nts			

- Flavour Changing Higgs Couplings
- 2 Higgs Contributions to ΔM
 - Peccei-Quinn-Type Symmetry of the Higgs Sector
 - 4 Types of Corrections
- 8 Effective Theory for the Higgs Sector
 - Matching of the Higgs Sector
- 4 Numerics and Results
 - Results for $\Delta M_{s/d}$
 - Constraints from $B_{s/d}
 ightarrow \mu^+ \mu^-$ and $B^+
 ightarrow \tau^+
 u$

5 Conclusions

Type-II 2HDM at tree level

•
$$H_d \leftrightarrow d_R$$
 and $H_u \leftrightarrow u_R$: $\mathcal{L}_{\text{eff}} = -Y_{ij}^d H_d \overline{d}_R^j q^j - Y_{ij}^u H_u \overline{u}_R^i q^j + \text{h.c.}$

Type-II 2HDM at tree level

• $H_d \leftrightarrow d_R$ and $H_u \leftrightarrow u_R$: $\mathcal{L}_{\text{eff}} = -Y_{ij}^d H_d \bar{d}_R^i q^j - Y_{ij}^u H_u \bar{u}_R^i q^j + \text{h.c.}$

• Mass and Yukawa are aligned

 $\begin{array}{c|c} Introduction \\ \bullet \circ \end{array} & \begin{array}{c} Higgs \ Contributions \ to \ \Delta M \\ \circ \circ \end{array} & \begin{array}{c} Effective \ Theory \ for \ the \ Higgs \ Sector \\ \circ \circ \end{array} & \begin{array}{c} Numerics \ and \ Results \\ \circ \circ \end{array} & \begin{array}{c} Conclusions \\ \circ \circ \end{array} & \begin{array}{c} Conclusions \\ \circ \circ \end{array} & \begin{array}{c} Conclusions \\ O \end{array} & \begin{array}{c} Conc$

Introduction: Flavour Changing Higgs Couplings

Type-II 2HDM at tree level

- $H_d \leftrightarrow d_R$ and $H_u \leftrightarrow u_R$: $\mathcal{L}_{\text{eff}} = -Y_{ij}^d H_d \overline{d}_R^j q^j Y_{ij}^u H_u \overline{u}_R^i q^j + \text{h.c.}$
- Mass and Yukawa are aligned

ype-II 2HDM at one-loop

• Soft breaking: $A\tilde{q}_{iL}^*H_u^*Y_{ij}\tilde{u}_{jR} + h.c.$

Type-II 2HDM at tree level

- $H_d \leftrightarrow d_R$ and $H_u \leftrightarrow u_R$: $\mathcal{L}_{\text{eff}} = -Y_{ij}^d H_d \overline{d}_R^j q^j Y_{ij}^u H_u \overline{u}_R^j q^j + \text{h.c.}$
- Mass and Yukawa are aligned

Type-II 2HDM at one-loop

- Soft breaking: $A \tilde{q}_{iL}^* H_u^* Y_{ij} \tilde{u}_{jR} + h.c.$
- H_u^* couples to down-quarks
- $\Delta \mathcal{L}_{eff}^{Y} = \epsilon_Y \bar{d}_R Y^d Y^{u\dagger} Y^u H_u^* \cdot Q_L$

Type-II 2HDM at tree level

- $H_d \leftrightarrow d_R$ and $H_u \leftrightarrow u_R$: $\mathcal{L}_{eff} = -Y_{ij}^d H_d \overline{d}_R^i q^j Y_{ij}^u H_u \overline{u}_R^i q^j + h.c.$
- Mass and Yukawa are aligned

Type-II 2HDM at one-loop

- Soft breaking: $A\tilde{q}_{iL}^*H_u^*Y_{ij}\tilde{u}_{jR}$ + h.c.
- H_u^* couples to down-quarks

•
$$\Delta \mathcal{L}_{eff}^{Y} = \epsilon_Y \overline{d}_R Y^d Y^{u\dagger} Y^u H_u^* \cdot Q_L$$

• Redefinition of m_b and $V_{\rm CKM}$:

Type-II 2HDM at tree level

•
$$H_d \leftrightarrow d_R$$
 and $H_u \leftrightarrow u_R$: $\mathcal{L}_{eff} = -Y_{ij}^d H_d \overline{d}_R^i q^j - Y_{ij}^u H_u \overline{u}_R^i q^j + h.c.$

• Mass and Yukawa are aligned

Type-II 2HDM at one-loop

- Soft breaking:
 A q̃^{*}_{iL} H^{*}_u Y_{ij} ũ_{jR} + h.c.
- H_u^* couples to down-quarks
- $\Delta \mathcal{L}_{eff}^{Y} = \epsilon_Y \overline{d}_R Y^d Y^{u\dagger} Y^u H_u^* \cdot Q_L$
- Redefinition of m_b and $V_{\rm CKM}$:
- Mass and Yukawa not aligned

Type-II 2HDM at tree level

•
$$H_d \leftrightarrow d_R$$
 and $H_u \leftrightarrow u_R$: $\mathcal{L}_{eff} = -Y_{ij}^d H_d \overline{d}_R^i q^j - Y_{ij}^u H_u \overline{u}_R^i q^j + h.c.$

• Mass and Yukawa are aligned

Type-II 2HDM at one-loop

- Soft breaking:
 A q̃^{*}_{iL} H^{*}_u Y_{ij} ũ_{jR} + h.c.
- H_u^* couples to down-quarks
- $\Delta \mathcal{L}_{eff}^{Y} = \epsilon_Y \overline{d}_R Y^d Y^{u\dagger} Y^u H_u^* \cdot Q_L$
- Redefinition of m_b and $V_{\rm CKM}$:
- Mass and Yukawa not aligned

Introduction

Higgs Contributions to ΔM

Effective Theory for the Higgs Sector $_{\rm OO}$

Numerics and Results Co

Conclusions

Flavour Changing Higgs Couplings and $\Delta M_{s/d}$

FC Higgs Couplings

- $\tan\beta\gg 1
 ightarrow v_{d}\gg v_{d}$
- Large corrections to the down-type quark masses
- Rediagonalisation

$$\begin{split} \kappa_b \bar{b}_R s_L \left(\cos\beta h_u^{0^*} - \sin\beta h_d^{0^*} \right) &\propto Y_b \\ \kappa_s \bar{b}_L s_R \left(\cos\beta h_u^0 - \sin\beta h_d^0 \right) &\propto Y_s \end{split}$$

• Similar structure for $b \rightarrow d$

Introduction

Higgs Contributions to ΔM 000

Effective Theory for the Higgs Sector $_{\rm OO}$

Numerics and Results Co

Conclusions

Flavour Changing Higgs Couplings and $\Delta M_{s/d}$

FC Higgs Couplings

- $\tan\beta\gg 1
 ightarrow v_{d}\gg v_{d}$
- Large corrections to the down-type quark masses
- Rediagonalisation

$$\kappa_b \bar{b}_R s_L \left(\cos \beta h_u^{0^*} - \sin \beta h_d^{0^*}
ight) \propto Y_b \ \kappa_s \bar{b}_L s_R \left(\cos \beta h_u^0 - \sin \beta h_d^0
ight) \propto Y_s$$

• Similar structure for $b \rightarrow d$

Is there a contribution to $\Delta M_{s/d}$? $\Delta M_q = -\langle \overline{B}_q | \mathcal{L}_{\mathrm{eff}}^{\Delta B=2} | B_q \rangle / m_{B_q}$

Effective Theory for the Higgs Sector 00

Numerics and Results C

Conclusions

Flavour Changing Higgs Couplings and $\Delta M_{s/d}$

FC Higgs Couplings

- $\tan\beta\gg 1 \rightarrow v_u \gg v_d$
- Large corrections to the down-type quark masses
- Rediagonalisation

$$\begin{split} \kappa_b \bar{b}_R s_L \left(\cos\beta h_u^{0^*} - \sin\beta h_d^{0^*}\right) &\propto Y_b \\ \kappa_s \bar{b}_L s_R \left(\cos\beta h_u^0 - \sin\beta h_d^0\right) &\propto Y_s \end{split}$$

• Similar structure for $b \rightarrow d$

Is there a contribution to $\Delta M_{s/d}$? $\Delta M_q = -\langle \overline{B}_q | \mathcal{L}_{\mathrm{eff}}^{\Delta B=2} | B_q \rangle / m_{B_q}$

Numerics and Results C

Conclusions

Flavour Changing Higgs Couplings and $\Delta M_{s/d}$

FC Higgs Couplings

- $\tan\beta\gg 1 \rightarrow v_u \gg v_d$
- Large corrections to the down-type quark masses
- Rediagonalisation

$$\kappa_b \bar{b}_R s_L \left(\cos \beta h_u^{0^*} - \sin \beta h_d^{0^*}
ight) \propto Y_b \ \kappa_s \bar{b}_L s_R \left(\cos \beta h_u^0 - \sin \beta h_d^0
ight) \propto Y_s$$

• Similar structure for $b \rightarrow d$

Is there a contribution to $\Delta M_{s/d}$? $\Delta M_q = -\langle \overline{B}_q | \mathcal{L}_{\mathrm{eff}}^{\Delta B=2} | B_q \rangle / m_{B_q}$

Numerics and Results C

Conclusions

Flavour Changing Higgs Couplings and $\Delta M_{s/d}$

FC Higgs Couplings

- $\tan\beta\gg 1
 ightarrow {\it v_u}\gg {\it v_d}$
- Large corrections to the down-type quark masses
- Rediagonalisation

$$\begin{split} \kappa_b \bar{b}_R s_L \left(\cos\beta h_u^{0^*} - \sin\beta h_d^{0^*} \right) &\propto Y_b \\ \kappa_s \bar{b}_L s_R \left(\cos\beta h_u^0 - \sin\beta h_d^0 \right) &\propto Y_s \end{split}$$

• Similar structure for $b \rightarrow d$

Is there a contribution to $\Delta M_{s/d}$? Claims of large effects in the literature [Freitas et. al. '07]

Numerics and Results

Conclusions

Peccei-Quinn-Type Symmetry of the Higgs Sector

Higgs-Potential of the MSSM

- Quartic interactions are quite restricted
- $V = m_{11}^{2} H_{d}^{\dagger} H_{d} + m_{22}^{2} H_{u}^{\dagger} H_{u}$ $+ \{m_{12}^{2} H_{u} \cdot H_{d} + h.c.\}$ $+ \frac{g^{2} + {g'}^{2}}{8} \left(H_{d}^{\dagger} H_{d} - H_{u}^{\dagger} H_{u}\right)^{2}$ $+ \frac{g^{2}}{8} \left(H_{u}^{\dagger} H_{d}\right) (H_{d}^{\dagger} H_{u})$
 - Study the Higgs potential in the broken phase for $v_d = 0$

Higgs sector for $\tan\beta \to \infty$

• The quadratic interactions give the Higgs masses $(H_d = (h_d^{0*}, -h_d^-))$:

$$V_{\rm ltb}^{(2)} = m_A^2 h_d^{\dagger} h_d + \frac{{g'}^2}{8} v^2 h_d^{-*} h_d^{-} + \frac{g^2 + {g'}^2}{8} v^2 h_u^{r^2}$$

Numerics and Results

Conclusions

Peccei-Quinn-Type Symmetry of the Higgs Sector

Higgs-Potential of the MSSM

- Quartic interactions are quite restricted
- $V = m_{11}^{2} H_{d}^{\dagger} H_{d} + m_{22}^{2} H_{u}^{\dagger} H_{u}$ $+ \{ m_{12}^{2} H_{u} \cdot H_{d} + h.c. \}$ $+ \frac{g^{2} + {g'}^{2}}{8} \left(H_{d}^{\dagger} H_{d} - H_{u}^{\dagger} H_{u} \right)^{2}$ $+ \frac{g^{2}}{8} \left(H_{u}^{\dagger} H_{d} \right) (H_{d}^{\dagger} H_{u})$
 - Study the Higgs potential in the broken phase for $v_d = 0$

Higgs sector for $\tan \beta \to \infty$

The quadratic interactions give the Higgs masses (H_d = (h_d^{0*}, -h_d⁻)):

$$V_{\rm ltb}^{(2)} = m_A^2 h_d^{\dagger} h_d + \frac{{g'}^2}{8} v^2 h_d^{-*} h_d^{-} + \frac{g^2 + {g'}^2}{8} v^2 h_u^{r^2}$$

Numerics and Results

Conclusions

Peccei-Quinn-Type Symmetry of the Higgs Sector

Symmetry for $v_d = 0$

- Higgs sector has a Peccei-Quinn-type symmetry:
- $Q(H_d) = 1$ and $Q(d_r) = 1$
- $(\bar{b}_L \gamma_\mu s_L) (\bar{b}_L \gamma^\mu s_L)$ $(\bar{b}_L s_R) (\bar{b}_R s_L)$ $(\bar{b}_R s_L) (\bar{b}_R s_L)$

Higgs sector for $\tan \beta \to \infty$

• The quadratic interactions give the Higgs masses $(H_d = (h_d^{0*}, -h_d^-))$:

$$V_{\rm ltb}^{(2)} = m_A^2 h_d^{\dagger} h_d + \frac{{g'}^2}{8} v^2 h_d^{-*} h_d^{-} + \frac{g^2 + {g'}^2}{8} v^2 h_u^{r^2}$$

Numerics and Results

Conclusions

Peccei-Quinn-Type Symmetry of the Higgs Sector

Symmetry for $v_d = 0$

- Higgs sector has a Peccei-Quinn-type symmetry:
- $Q(H_d) = 1$ and $Q(d_r) = 1$
- $(\bar{b}_L \gamma_\mu s_L) (\bar{b}_L \gamma^\mu s_L)$: $\Delta Q = 0$ $(\bar{b}_L s_R) (\bar{b}_R s_L)$: $\Delta Q = 0$ $(\bar{b}_R s_L) (\bar{b}_R s_L)$: $\Delta Q = 2$
- Would be leading operator forbidden
- Systematic study of all "subleading" effects

Higgs sector for $\tan \beta \to \infty$

The quadratic interactions give the Higgs masses (H_d = (h_d^{0*}, -h_d⁻)):

$$V_{\rm ltb}^{(2)} = m_A^2 h_d^{\dagger} h_d + \frac{{g'}^2}{8} v^2 h_d^{-*} h_d^{-} + \frac{g^2 + {g'}^2}{8} v^2 h_u^{r^2}$$

Numerics and Results

Conclusions

Peccei-Quinn-Type Symmetry of the Higgs Sector

Symmetry for $v_d = 0$

- Higgs sector has a Peccei-Quinn-type symmetry:
- $Q(H_d) = 1$ and $Q(d_r) = 1$
- $(\bar{b}_L \gamma_\mu s_L) (\bar{b}_L \gamma^\mu s_L)$: $\Delta Q = 0$ $(\bar{b}_L s_R) (\bar{b}_R s_L)$: $\Delta Q = 0$ $(\bar{b}_R s_L) (\bar{b}_R s_L)$: $\Delta Q = 2$
- Would be leading operator forbidden
- Systematic study of all "subleading" effects

Higgs sector for $\tan \beta \to \infty$

The quadratic interactions give the Higgs masses (H_d = (h_d^{0*}, -h_d⁻)):

$$V_{\rm ltb}^{(2)} = m_A^2 h_d^{\dagger} h_d + \frac{{g'}^2}{8} v^2 h_d^{-*} h_d^{-} + \frac{g^2 + {g'}^2}{8} v^2 h_u^{r^2}$$

Introduction	Higgs Contributions to ΔM	Effective Theory for the Higgs Sector	Numerics and Results	Conclusions
	000			

PQ conserving contributions

1, $(\overline{b}_L s_R)(\overline{b}_R s_L)$: m_s/m_b

• $(\bar{b}_L s_R)$ is m_s/m_b suppressed to $(\bar{b}_R s_L)$. [Buras, Chankowski, Rosiek,

Slawianowska '02]

$$s_L$$
 b_R H_d b_L s_R

- Always decreases ΔM_s
- Negligible (m_d/m_b) for ΔM_d

2, $(ar{b}_L\gamma_\mu s_L)(ar{b}_L\gamma_\mu s_L)$: $Y_b^2/16\pi^2$

• Weak scale loop corrections

Introduction	Higgs Contributions to ΔM	Effective Theory for the Higgs Sector	Numerics and Results	Conclusions
	000			

PQ conserving contributions

1, $(\bar{b}_L s_R)(\bar{b}_R s_L)$: m_s/m_b

• $(\bar{b}_L s_R)$ is m_s/m_b suppressed to $(\bar{b}_R s_L)$. [Buras, Chankowski, Rosiek,

Slawianowska '02]

$$\begin{array}{c|c} s_L & b_R \\ & H_d \\ b_L & s_R \end{array}$$

- Always decreases ΔM_s
- Negligible (m_d/m_b) for ΔM_d

• Increases $\Delta M_{s/d}$ but numerically small

Introduction	Higgs Contributions to ΔM	Effective Theory for the Higgs Sector	Numerics and Results	Conclusions

PQ conserving contributions

1, $(\overline{b}_L s_R)(\overline{b}_R s_L)$: m_s/m_b

• $(\bar{b}_L s_R)$ is m_s/m_b suppressed to $(\bar{b}_R s_L)$. [Buras, Chankowski, Rosiek,

Slawianowska '02]

$$s_L$$
 b_R H_d b_L s_R

- Always decreases ΔM_s
- Negligible (m_d/m_b) for ΔM_d

• Increases $\Delta M_{s/d}$ but numerically small

3, Higher dimensional operators:

 Non tan β suppressed operators, which give a flavour violating contribution

 Redefine FC Higgs couplings with v²/M_{SUSY} suppression
 Needs PQ breaking: Tiny

4, $(\bar{b}_R s_L)(\bar{b}_R s_L)$

3, Higher dimensional operators:

 Non tan β suppressed operators, which give a flavour violating contribution

- Redefine FC Higgs couplings with $v^2/M_{\rm SUSY}$ suppression
- Needs PQ breaking: Tiny

4, $(\bar{b}_R s_L)(\bar{b}_R s_L)$

• Needs a $\Delta Q = 2$ interaction in the Higgs potential

3, Higher dimensional operators:

 Non tan β suppressed operators, which give a flavour violating contribution

- Redefine FC Higgs couplings with $v^2/M_{\rm SUSY}$ suppression
- Needs PQ breaking: Tiny

4, $(\bar{b}_R s_L)(\bar{b}_R s_L)$

 Needs a ΔQ = 2 interaction in the Higgs potential

- Suppressed by SUSY loop in the Higgs potential
- Increases $\Delta M_{s/d}$

3, Higher dimensional operators:

 Non tan β suppressed operators, which give a flavour violating contribution

- Redefine FC Higgs couplings with $v^2/M_{\rm SUSY}$ suppression
- Needs PQ breaking: Tiny

4, $(\bar{b}_R s_L)(\bar{b}_R s_L)$

 Needs a ΔQ = 2 interaction in the Higgs potential

- Suppressed by SUSY loop in the Higgs potential
- Increases $\Delta M_{s/d}$

We need the Higgs potential for small momenta.

- Use effective theory framework for $M_{
 m SUSY} > M_{
 m 2HDM}$
- The effective Higgs potential is a type-III 2HDM

• Match the 4 point functions:

$$\frac{\lambda_1}{2} (H_d^{\dagger} H_d)^2 + \frac{\lambda_2}{2} (H_u^{\dagger} H_u)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) + \left\{ \frac{\lambda_5}{2} (H_u \cdot H_d)^2 - \lambda_6 (H_d^{\dagger} H_d) (H_u \cdot H_d) - \lambda_7 (H_u^{\dagger} H_u) (H_u \cdot H_d) + \text{h.c.} \right\}$$

[Haber et al., Carena et al. ...]

Effective Theory for the Higgs Sector: Quartic Sector

We need the Higgs potential for small momenta.

- \bullet Use effective theory framework for $\mathit{M}_{\rm SUSY} > \mathit{M}_{\rm 2HDM}$
- The effective Higgs potential is a type-III 2HDM

• Match the 4 point functions:

$$\frac{\lambda_1}{2} (H_d^{\dagger} H_d)^2 + \frac{\lambda_2}{2} (H_u^{\dagger} H_u)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) + \left\{ \frac{\lambda_5}{2} (H_u \cdot H_d)^2 - \lambda_6 (H_d^{\dagger} H_d) (H_u \cdot H_d) - \lambda_7 (H_u^{\dagger} H_u) (H_u \cdot H_d) + \text{h.c.} \right\}$$

• $\lambda_5 (H_u \epsilon H_d)^2 / 2$ breaks PQ ($Q(H_d^2) = 2$) [Haber et al., Carena et al. ...]

Effective Theory for the Higgs Sector: Quartic Sector

We need the Higgs potential for small momenta.

- \bullet Use effective theory framework for $\mathit{M}_{\rm SUSY} > \mathit{M}_{\rm 2HDM}$
- The effective Higgs potential is a type-III 2HDM

• Match the 4 point functions:

$$\frac{\lambda_1}{2} (H_d^{\dagger} H_d)^2 + \frac{\lambda_2}{2} (H_u^{\dagger} H_u)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) + \left\{ \frac{\lambda_5}{2} (H_u \cdot H_d)^2 - \lambda_6 (H_d^{\dagger} H_d) (H_u \cdot H_d) - \lambda_7 (H_u^{\dagger} H_u) (H_u \cdot H_d) + \text{h.c.} \right\}$$

• $\lambda_5 (H_u \epsilon H_d)^2 / 2$ breaks PQ $(Q(H_d^2) = 2)$ [Haber et al., Carena et al. ...]

Effective Theory for the Higgs Sector: Quadratic Sector

Specify the scheme of the full theory

- Zero tadpoles for sparticles: Fix m_{11} and m_{22}
- $\bullet~\overline{\rm DR}$ for $\tan\beta$
- Decouple α

Effective Theory for the Higgs Sector: Quadratic Sector

Specify the scheme of the full theory

- Zero tadpoles for sparticles: Fix m_{11} and m_{22}
- $\overline{\mathrm{DR}}$ for $\tan\beta$
- Decouple α

 M_A^2 onshell fixes m_{12}^2 or $B\mu$ M_W and M_Z : $v_{u/d} + \delta v_{u/d} = v_{u/d}^{\text{eff}}$

Effective theory: Kinetic term

• Redefine the kinetic term, i.e. $\partial_{\mu}H_{u}\partial^{\mu}H_{d} \rightarrow Z_{ud}\partial_{\mu}H_{u}\partial^{\mu}H_{d}$

Effective Theory for the Higgs Sector

Effective Theory for the Higgs Sector: Quadratic Sector

Specify the scheme of the full theory

- Zero tadpoles for sparticles: Fix m_{11} and m_{22}
- $\overline{\mathrm{DR}}$ for tan β
 - Decouple α

 $M_{\rm A}^2$ onshell fixes m_{12}^2 or $B\mu$ M_W and M_Z : $v_{u/d} + \delta v_{u/d} = v_{u/d}^{\text{eff}}$

Effective theory: Kinetic term

 Redefine the kinetic term. i.e. $\partial_{\mu}H_{\mu}\partial^{\mu}H_{d} \rightarrow Z_{\mu d}\partial_{\mu}H_{\mu}\partial^{\mu}H_{d}$

Effective Theory for the Higgs Sector

Effective Theory for the Higgs Sector: Quadratic Sector

Specify the scheme of the full theory

- Zero tadpoles for sparticles: Fix m_{11} and m_{22}
- M2 anchall fires 2 an D • DR for tan β
- Decouple α

$$M_{A}$$
 onshell fixes M_{12} or $B\mu$
 M_W and M_Z : $v_{u/d} + \delta v_{u/d} = v_{u/d}^{\text{eff}}$

Effective theory: Kinetic term

 Redefine the kinetic term. i.e. $\partial_{\mu}H_{\mu}\partial^{\mu}H_{d} \rightarrow Z_{\mu d}\partial_{\mu}H_{\mu}\partial^{\mu}H_{d}$

$$\begin{pmatrix} v_u^{\text{eff}} \\ v_d^{\text{eff}} \end{pmatrix} = \begin{pmatrix} 1 + \delta Z_{uu}/2 & \delta Z_{ud}/2 \\ 0 & 1 + \delta Z_{dd}/2 \end{pmatrix} \begin{pmatrix} v_u \\ v_d \end{pmatrix}$$

•
$$aneta_{ ext{full}} \simeq aneta_{ ext{eff}}$$

• Compute ΔM in the broken theory: λ_5 gives the leading contribution

Effective Theory for the Higgs Sector: Quadratic Sector

Specify the scheme of the full theory

- Zero tadpoles for sparticles: Fix m_{11} and m_{22}
- $\overline{\mathrm{DR}}$ for \taneta
 - Decouple α

$$M_A^2$$
 onshell fixes m_{12}^2 or $B\mu$
 M_W and M_Z : $v_{u/d} + \delta v_{u/d} = v_{u/d}^{
m eff}$

Effective theory: Kinetic term

• Redefine the kinetic term, i.e. $\partial_{\mu}H_{\mu}\partial^{\mu}H_{d} \rightarrow Z_{\mu d}\partial_{\mu}H_{\mu}\partial^{\mu}H_{d}$

$$\begin{pmatrix} v_u^{\text{eff}} \\ v_d^{\text{eff}} \end{pmatrix} = \begin{pmatrix} 1 + \delta Z_{uu}/2 & \delta Z_{ud}/2 \\ 0 & 1 + \delta Z_{dd}/2 \end{pmatrix} \begin{pmatrix} v_u \\ v_d \end{pmatrix}$$

• tan
$$eta_{\mathrm{full}} \simeq ext{tan} \, eta_{\mathrm{eff}}$$

• Compute ΔM in the broken theory: λ_5 gives the leading contribution

Introduction 00	Higgs Contributions to Δ <i>M</i> 000	Effective Theory for the Higgs Sector	Numerics and Results ●○○	Conclusions
Results	for $\Delta M_{s/d}$			

Approximate formula for ΔM

$$\begin{split} (\Delta M - \Delta M_{\rm SM})_{s/d} &= \left\{ \begin{array}{c} -14 \mathrm{ps}^{-1} \\ \sim 0 \mathrm{ps}^{-1} \end{array} \right\} X \left[\frac{m_s}{0.06 \mathrm{GeV}} \right] \left[\frac{m_b}{3 \mathrm{GeV}} \right] \left[\frac{P_2^{\rm LR}}{2.56} \right] \\ &+ \left\{ \begin{array}{c} 4.4 \mathrm{ps}^{-1} \\ .13 \mathrm{ps}^{-1} \end{array} \right\} X \left[\frac{M_W^2 \left(-\lambda_5 + \frac{\lambda_7^2}{\lambda_2} \right) 16\pi^2}{M_A^2} \right] \left[\frac{m_b}{3 \mathrm{GeV}} \right]^2 \left[\frac{P_1^{\rm SLL}}{-1.06} \right] \end{split}$$

$$X = \frac{m_t^4}{M_W^2 M_A^2} \frac{\left(\epsilon_Y 16\pi^2\right)^2}{\left(1 + \tilde{\epsilon}_3 \tan\beta\right)^2 \left(1 + \epsilon_0 \tan\beta\right)^2} \left[\frac{\tan\beta}{50}\right]^4$$

 H^+

1J

- Is sensitive to M_{H^+}
- Cuts into the light *M_A* parameter space

NI 1				
Introduction	Higgs Contributions to ΔM	Effective Theory for the Higgs Sector	Numerics and Results	Conclusions

Numerics

Introduction 00	Higgs Contributions to Δ <i>M</i> 000	Effective Theory for the Higgs Sector	Numerics and Results	Conclusions
Conclus	sions			

• Systematic investigation of all leading contributions to ΔM_q in the MFV-MSSM with large tan β and heavy sparticles

• Correlation of ΔM and ${\sf BR}(B o \mu^+ \mu^-)$

Introduction 00	Higgs Contributions to Δ <i>M</i> 000	Effective Theory for the Higgs Sector	Numerics and Results	Conclusions
Conclus	sions			

- Systematic investigation of all leading contributions to ΔM_q in the MFV-MSSM with large tan β and heavy sparticles
- Correlation of ΔM and ${\sf BR}(B o \mu^+ \mu^-)$

 With all contributions under control: Present experimental bounds on BR(B → μ⁺μ⁻) do not allow for a significant decrease (increase) of ΔM_s(ΔM_d)

Introduction 00	Higgs Contributions to Δ <i>M</i> 000	Effective Theory for the Higgs Sector	Numerics and Results	Conclusions
Conclu	sions			

- Systematic investigation of all leading contributions to ΔM_q in the MFV-MSSM with large $\tan\beta$ and heavy sparticles
- Correlation of ΔM and ${\sf BR}(B o \mu^+ \mu^-)$

- With all contributions under control: Present experimental bounds on BR(B → μ⁺μ⁻) do not allow for a significant decrease (increase) of ΔM_s(ΔM_d)
- No large effects are found. Still, corrections to Higgs masses/mixings can be relevant for small M_A (< 200GeV).

Introduction 00	Higgs Contributions to Δ <i>M</i> 000	Effective Theory for the Higgs Sector	Numerics and Results	Conclusions
Conclu	sions			

- Systematic investigation of all leading contributions to ΔM_q in the MFV-MSSM with large $\tan\beta$ and heavy sparticles
- Correlation of ΔM and ${\sf BR}(B o \mu^+ \mu^-)$

- With all contributions under control: Present experimental bounds on BR(B → μ⁺μ⁻) do not allow for a significant decrease (increase) of ΔM_s(ΔM_d)
- No large effects are found. Still, corrections to Higgs masses/mixings can be relevant for small M_A (< 200GeV).

Introduction 00	Higgs Contributions to Δ <i>M</i> 000	Effective Theory for the Higgs Sector	Numerics and Results Conclusions
		and the second sec	

Wavefunction renormalisation drops out

• changes:
$$\frac{\sin^2_{\alpha-\beta}}{M^2_H} + \frac{\cos^2_{\alpha-\beta}}{M^2_h} - \frac{1}{M^2_A}$$

- canceled by wavefunction renormalisation in FC Higgs interactions
- only effect from $\overline{\mathrm{DR}}\lambda$