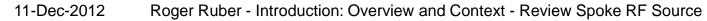


ESS Spoke RF Source Introduction: Overview and Context

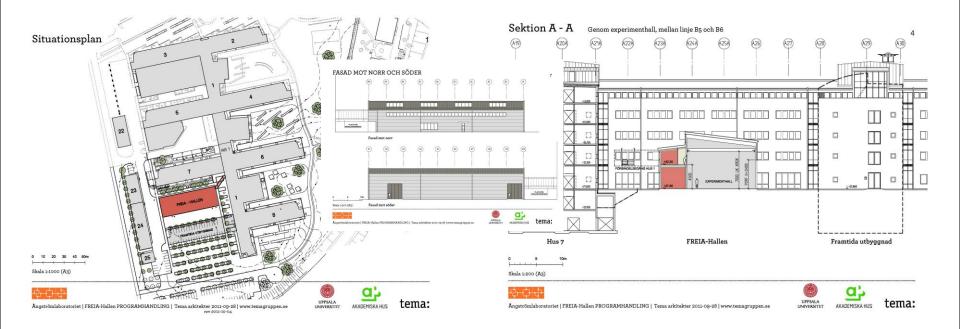
Roger Ruber for the FREIA Team


Review ESS Spoke RF Source 11 – 12 December 2012

Accelerator Physics at Uppsala University

Concentrating on RF and instrumentation ...

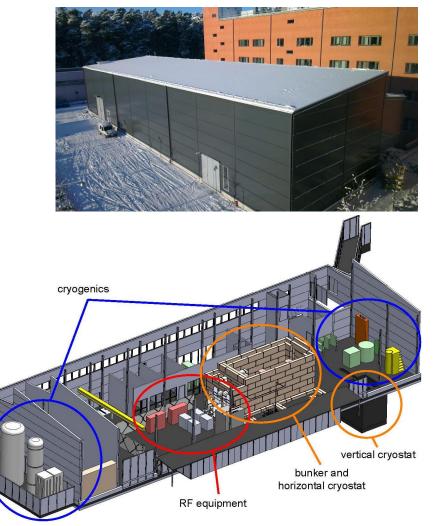
- Cyclotron (since 1948)
- CELSIUS ring (1984 2006)
- CTF3 / CLIC
 - Two-beam Test Stand & RF breakdown issues
 - FP6-EuroTeV, FP7-EuCARD
 - NorduCLIC
- FEL
 - FLASH Optical Replica Synthesizer,
 - XFEL Laser Heater
 - Stockholm-Uppsala FEL Centrum
- ESS
 - RF systems
- FP7-TIARA



Several circumstances

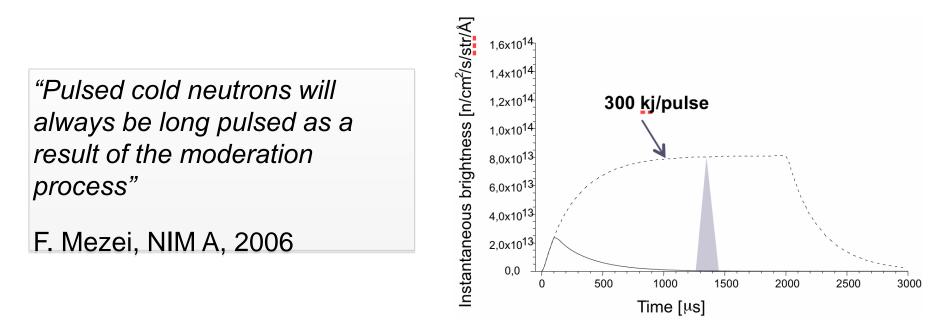
- test stand for RF systems needs large experiment space and bunker
- university's helium liquefier in need of replacement

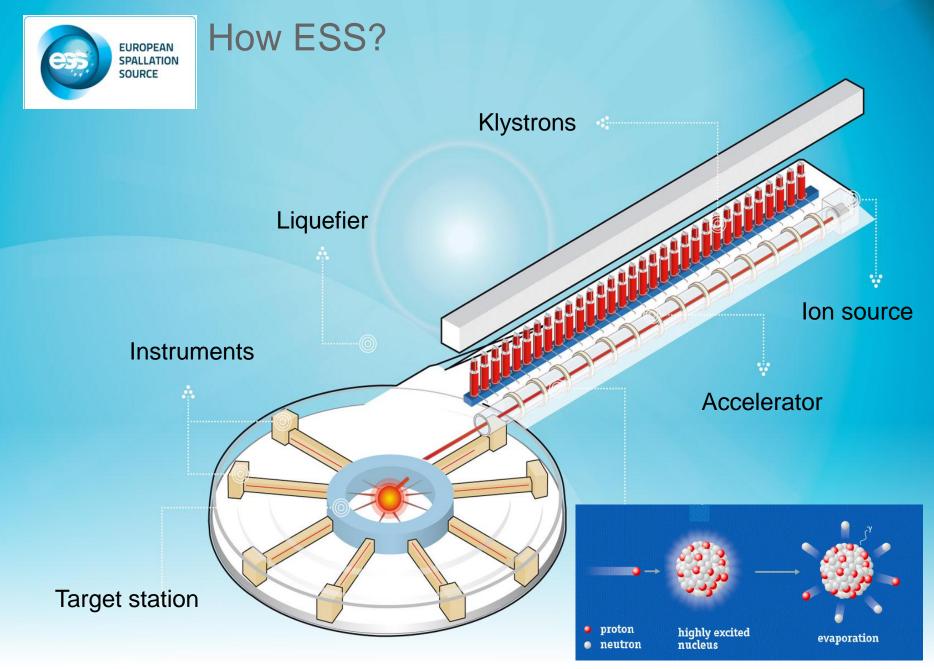
University decides on new construction at the Ångström laboratory


What FREIA?

Facility for Research Instrumentation and Accelerator Development

- General Infrastructure
 - LHe and LN2 production and distribution
 - small workshop, control room
 - concrete bunkers
- RF test stands
 - 352 MHz RF source for ESS spoke cavities
 - horizontal test cryostat (vertical in future)
- Neutron generator
 - neutron tomography, detector tests
 - student exercises and projects





Why ESS?

- Many research reactors in Europe are aging & will close before 2020
 - Up to 90% of their use is with cold neutrons (<0.025 MeV)
- There is a urgent need for a new high flux cold neutron source
 - Most users are fully satisfied by a long pulse source
 - Existing short pulse sources (ISIS, JPARC, SNS) can supply the present and imminent future need of short pulse users

- Lund, Sweden, next to MAX-IV
 - 17 member states
- 5 MW pulsed neutron source
 - 14 Hz rep. rate, 4% duty factor
 - >95% reliability for user time
- Cost estimates (2008 prices)
 - 1,5 G€ / 10 years
 - 50% by Sweden, Denmark, Norway
- Time frame:
 - 2019 first neutrons
 - 2019 2025 consolidation and operation
 - 2025 2040 operation
- · High intensity allows studies of
 - complex materials, weak signals, time dependent phenomena

The ESS Accelerator

 $352.21 \text{ MHz} \longrightarrow 704.42 \text{ MHz} \longrightarrow 704.42 \text{ MHz} \longrightarrow 159.8 \text{ m} \longrightarrow 159.8$

- single pass linear proton accelerator
 - 5 MW p⁺: 50 mA, 2.5 GeV, 14 Hz, 2.86 ms
 - < 1 W/m losses</p>
 - 95% user beam time reliability
- normal conducting (room temperature)
 - electron cyclotron resonance source (ECR)
 - radio-frequency quadrupole (RFQ)
 - drift tube linac (DTL)
- superconducting (liquid helium temperature)
 - double spoke resonators (DSR) with high velocity acceptance
 - elliptical cavities

• 2009

- ESS has need for R&D and test stand,
 - but small staff, no buildings, existing test stands occupied
- start discussion with UU on 704 MHz RF development
- proposal for ESS dedicated test facility at UU

• 2011

- Spring:
 - ESS-UU contract on 704 MHz RF R&D
 - ESS changes to 14 Hz rep rate, 2.89 ms beam pulse
- Fall:
 - ESS changes pulse modulator strategy \rightarrow delays UU test stand

• 2012

- UU starts work on 352 MHz RF for spoke resonators
 - spoke resonators require new power source development
 - spoke resonators have never been used in an accelerator
- and prepare for cryomodule testing (prototype and final)

Where do we fit in...

ESS Test Stand Matrix		f	Р	Pupg	cryo	prototype				series				
							low power		high power		low power		high power	
			[MHz]	[kW]	[kW]		where	when	where	when	where	when	where	when
PO	Structures													
	ion source						LNS		LNS				on site	
	LEBT buncher		352	10			LNS ?		LNS ?				on site	
	RFQ		352	1000			CEA		CEA				on site	
	MEBT						ESS-B?		ESS-B?				on site	
	DTL		352	2100			LNL		CERN (Linac	:4)			on site	
	spoke resonators		352	240	800	У	IPNO		ບບ		7?			
	medium beta elliptical		704	500	1000	У	CEA ?		CEA?		DESY ?		1	
	high beta elliptical		704	900	1800	У	CEA		CEA ?		DESY ?		1	
						22.00								
P1	Couplers													
	spoke resonators		352	800	1600		IPNO		CEA		??		??	
	medium beta elliptical		704	650	1300		CEA ?		CEA ?		??		??	
	high beta elliptical		704	1200	2500		CEA		CEA ?		??		55	
			_											
P2	RF System													
	modulator			5600					ESS				ESS	
	NC linac		352	2800					FCC				ESS	
	spoke		352	300									ESS	
	elliptical		704	1300					ESS				ESS	
P3	Cryomodule													
	spoke	2 cavities	352	2x 300		У	IPNO	(υυ)	27		UU ?	
	SPL prototype	4 cavities	704	1x 1500		y	CERN		CERN					
	ESS prototype	4 cavities	704	255		y	CEA		CEA					
	low beta elliptical	6 cavities	704	6x650		y					ESS		ESS	
	high beta elliptical	8 cavities	704	8x1200		ý					ESS		ESS	
	nign beta elliptical	o cavilies	/04	0X1200		У					E33		E33	

1) Contribution to the Technical Design Report

- design concept 352 MHz spoke source
- design concept RF distribution

2) Contribution to the construction planning effort

- survey test stand infrastructure and requirements
- study of upgrade scenarios RF systems for ESS power upgrade

3) Development 352 MHz RF power source for spokes

- 1st prototype, soak test with water load and SRF spoke resonator, incl. LLRF

4) System test prototype spoke cavity

- high power test fully dressed cavity (in test cryostat)
- 5) System test prototype spoke cryomodule
 - high power test complete prototype spoke cryomodule (2 cavities)

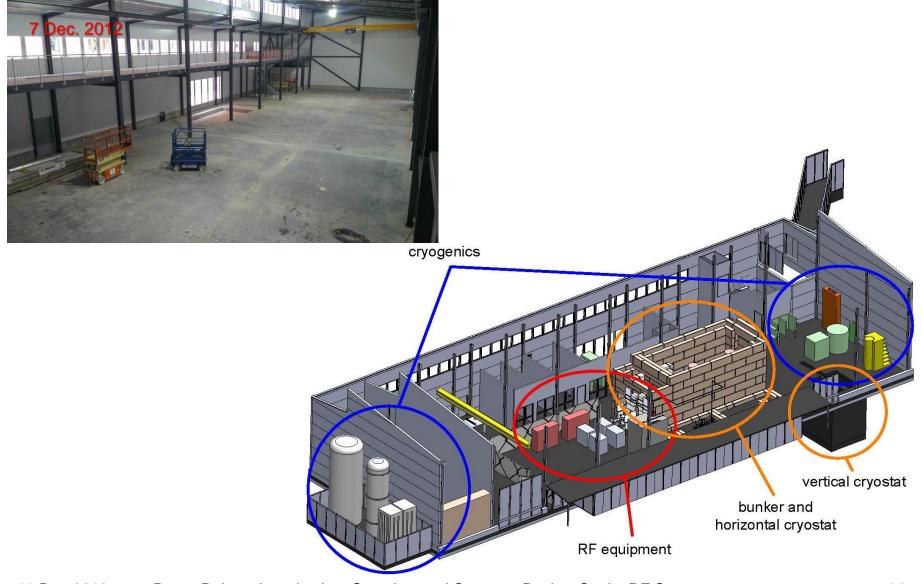
6) Acceptance testing spoke cryomodules (under discussion)

- for all final cryomodules before installation

- 2016: start tendering for construction
- 2015: results of prototype cavity must be available
- 2014: FREIA infrastructure and RF source must be available

		2013				2014				2015			
		Q1	Q2 	Q3 	Q4	Q1	Q2	Q3 	Q4	Q1	Q2 	Q3 	Q4
FREIA hall	available			01-Jul					2 2		2		
	liquefier and test cryostat												
1st source	tender & production												
	installation & commissioning												
spoke cavity	installation & testing												
2nd source	tender & production												
	installation & commissioning								2 2				
spoke cryomodule	installation & testing												

Construction Progress



11-Dec-2012 Roger Ruber - Introduction: Overview and Context - Review Spoke RF Source

Inside the Hall

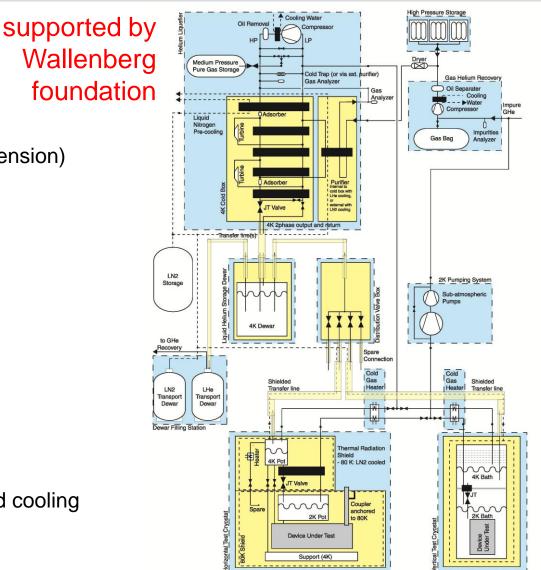
11-Dec-2012 Roger Ruber - Introduction: Overview and Context - Review Spoke RF Source

FREIA Cryogenic Centre

Multiple users

- transport dewar filling station
- horizontal test cryostat or ESS cryomodule
- vertical test cryostat (future extension)

Helium liquefier


- 140 l/h peak load at 4 K
- 2000 I storage dewar
- ~8 g/s, 80 W peak load at 2 K

Helium recovery system

- 80 m3/h average
- 100 m3 gas balloon

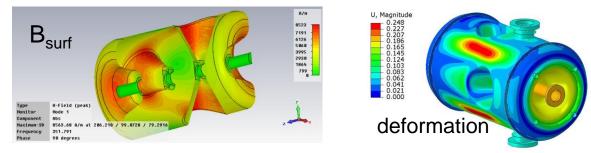
Liquid nitrogen

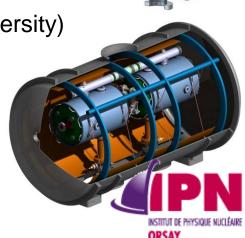
- helium liquefier pre-cooling
- cryostat thermal radiation shield cooling
- distribution to external users

• internal volume (3.5 m x Φ 1.1 m) AP=2mb REHEATER Cryogenic line ∆P=2mbar - for 1 or 2 spoke or elliptical cavities LHe LN_2 operation temperature range 1.5 – 4.2 K V15A V9 N recovery √13 system based on existing designs V1'5E **V14** <u>v10</u> N. - CHECHIA, CryoHoLab, HoBiCat at 80 H Vacuum vessel Cold box 30K Thermal shield Supercritical He CCELERATORS AND **OGENIC SYSTEMS** heat exchanger Subcoolina heat exchanger V11 _V5 le 20K circuit He 4K circuit He 2K circuit V12 ➣ He 2K TLN2 liquid level (LT) ιT θ : pressure control (PT) T: temperature control : safety relief valve : connection cryogenic valve (т) Χsupported by X : JT valve CAVITY CAVITY E : classic valve S : electrical heater Wallenberg Vacuum vessel M foundation Cryostat

ESS Spoke Testing

Prototype spoke cavity


- one power amplifier and RF distribution (UU)
- fully dressed cavity (IPNO) in test cryostat (UU)

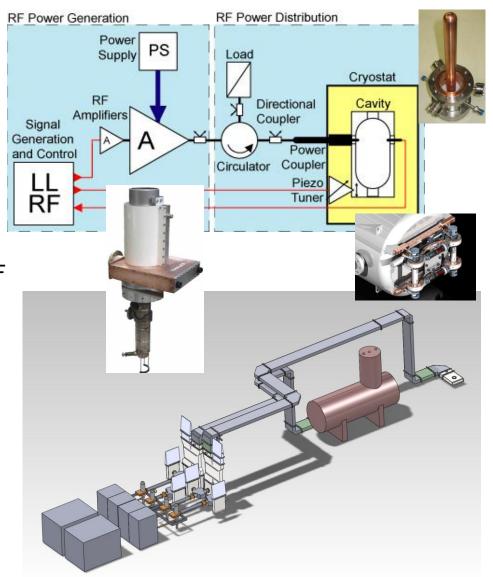

Prototype spoke cryomodule

- two power amplifiers and RF distribution (Uppsala University)
- LLRF (Lund University)
- cryomodule with two spoke resonators (IPN Orsay)

Study high power behaviour

- Lorenz force detuning, compensation by tuner
- dynamic load, electron emission and multipactoring
- LLRF controls, amplitude and phase stability
- soak test

Peak fields @ 8 MV/m • $E_{surf} = 35 \text{ MV/m}$ • $B_{surf} = 56 \text{ mT}$ Deformation 0.25 mm Cryo loss = 15 W



FREIA 352 MHz RF Source

RF source development

- 300 kW power amplifier
 - for FREIA testing (1~2pc)
 - for ESS linac (28pc)
- tetrode based: 2xTH595
 - available solution
 - confirmed 352 MHz, 200 kW, 4.6% DF
 - fall-back for ESS power source
 - low capital cost
- solid-state based:
 - no commercial available solution
 - development required (collaboration with FP7-CRISP)
 - promises high reliability, fast MTTR

Frequency	352.21	MHz
Repetition rate	14	Hz
Beam pulse length	2.86	ms
RF pulse length	3.5	ms
Power to beam, max.	240	kW
Power to cavity, max.	270	kW
Power overhead for control	15	%
Power overhead for losses in distribution	5	%
Power output amplifier	300	kW
Bandwidth at 3 dB	>250	kHz

- FREIA will
 - test RF spokes for ESS
 - develop spoke RF source for test and ESS linac
- 1st prototype spoke cavity to arrive mid-2014
 - RF source and infrastructure must be available beforehand
- Review of spoke RF source
 - chosen tetrode solution for FREIA source and ESS fall-back
 - working on solid-state development
 - possible 2nd source for cryomodule testing
 - alternative for ESS linac