

Diagnostics and Controls K. Gajewski

ESS Spoke RF Source Accelerator Internal Review

Outline

- EPICS
- Subsystems
 - Cryogenics
 - Vacuum
 - RF Power Supplies & Amplifiers
 - LLRF
 - Timing
 - Safety systems (MPS, PPS)
- Instrumentation
- Control System Studio
- Summary

Experimental Physics and Industrial Control System

Why EPICS?

- Has all features that we need at FREIA
- Mature, well maintained system
- Will be used at ESS

- EPICS drivers and device support for many commercial instrumentation
- Easy integration with PLCs
- Very wide users base and helpful community
- Scalable, suits well for both small and very large installations
- Ongoing projects on making EPICS easier to install, configure and maintain (CODAC at ITER, Integrated Control System at ESS)

• Cryoplant

- Will be delivered by Linde.
- Local controls based on Siemens Simatic S7-315 PLC
- Has interface to EPICS
- Vacuum
 - Pumps
 - Valves
 - Vacuum gauges
 - PLC controller

RF Power Supplies & Amplifiers

- Anode PS
- Control Screen PS, Grid Screen PS
- Filament PS
- Solid State Amplifier

Controlled by Simatic PLC or/and via serial interfaces

• LLRF

Initial solution for tests on a dummy load

- Function generator
- Digital oscilloscope
- Vector network analyzer
- LabView

– Final solution for the cavity tests

 LLRF system supplied by ESS based on system developed at DESY

• LIBERA - complete LLRF system from Instrumentation Technologies

Subsystems Controlled by EPICS (cont.)

Timing

Event generator

Micro-Research cPCI-EVG-230

- Front panel RF input and programmable divider /1, /2, /3, ..., /12, /14, ..., /20 to generate event clock
- Event clock rate 50 MHz to 125 MHz
- Front panel mains synchronization input
- 4 hardware inputs
- Optional side-by-side module for additional 6 inputs
- Up to 255 events
- Heart-beat
- Can be used for distribution of interlock signals

Event receiver Micro-Research cPCI-EVR-230

- 2 front panel trigger inputs
- 2 universal I/O slots for four hardware outputs
- Optional side-by-side module for three additional universal I/O slots
- Jitter typically < 25 ps rms
- RF Clock 88.052500 MHz
- Event granuality ~110 ns

Safety Systems

- Machine Protection System
 - PLC for the "slow" interlocks tenths of ms
 - Fast interlocks implemented in hardware
 - Interlock distribution possible on the timing system bus
 - Post mortem data

- Personnel Protection System
 - Radiation protection system
 - Access control
 - RF leakage interlock

Laboratory instruments

- Digital oscilloscopes
- Vector Network Analyzer with power measurement probes
- Signal generators
- Programmed with LabVIEW

Integrated with EPICS

Instrumentation

Fast ADC for directly sampling the signals from the directional couplers and cavity antenna

- sampling at 150 MSa/s, 14 bits,
- input bandwidth > 400 MHz
- no need for mixers
- inexpensive system
- Direct digital synthesizer (DDS) for generating RF signal to the cavity

Control System Studio

- Control System Studio (CSS)
 - GUI interface (BOY)
 - Alarm toolkit (BEAST)
 - Archiver (BEAUTY)
 - Set/Restore (PV Table)
 - Testing and Debugging Tools

🗖 Synchronize ba 🖳 Co	onsole 🔯 Alarm Tree	view 🛛	Properties		18 🕸	
		n 19	Property	Value		
👘 🖓 Diatteoplatz			alarm display	/CSS/SDS/hera/klima54+55.css-sds		
		display	/CSS/SDS/hera/klima/klima54+55.css-sds			
En Cob Sel	nd Acknowledgement		help guidance	Zur Zeit gibt es keine Überwachung der Kaltwassersaetze durch die Kontroll	techniker!	
	in Alarm Display		help page	http://elogbook.desy.de:8080/eLogbook/index.html		
	in Alanii Display In Dicolay		name	Rechner-Räume		
	n Display		object class	epicsComponent		
	ben Strip Chart		strip chart	/CSS/DataBrowser/Rechnersysteme/Rechnerraeume-Temperaturen.css-plt		
	iow Help Guidance					
	ben Help Page					
	Joto					
	acto Acto Decend					
🛨 🖳 🔮 GLYK 🔍 🖓	eate Record					
	eate Subcomponent					
🕀 🖤 💭 Kuehlturmkreis					1	
🖾 🔚 🛄 TT:K:WK:T1	1:PrDLu mbbi					

11-Dec-2012 Konrad Gajewski - FREIA Diagnostics and Controls

Done so far:

- Chosen the system architecture
- Identified the main subsystems and the way to integrate them
- Set-up EPICS test system
- Connection to Siemens PLC
- Tested Control System Studio

In the pipeline:

- LabVIEW $\leftarrow \rightarrow$ EPICS
- Set-up an IOC (Control Box) for the timing system and I/O modules

• Extra slides (not to be shown if not requested)

- A Collaboration
- A Control System Architecture

Channel Access *clients* are programs that require access to <u>*Process Variables*</u> to carry out their purpose

The "service" that a Channel Access server provides is access to a <u>Process</u> <u>Variable*</u>

Canonical Form of an EPICS Control System

- Allows other programs (CA Clients) to see and change values of Process Variables in an IOC (CA Server)
- CA Clients may
 - Put (write)
 - Get (read)
 - Monitor
 - data of Process Variables
- IOCs are both CA clients and CA servers. They can interact with data in other IOCs
- A CA Client can connect to many servers
- A CA Server may serve many clients
- A very efficient an reliable protocol

Workstation

The major software components of an IOC (IOC Core)

- Supported hardware:
- ADLINK cPCI-3965(4HP) (CPU Core2 Duo, 2.2 GHz, VGA, 2 GigE, 2 USB)

http://www.adlinktech.com/PD/marketing/Datasheet/cPCI-3965/cPCI-3965_Datasheet_en_1.pdf

- ADLINK cPCI-9116 (64-ch 16-bit 250 kS/s, 1 timer/counter, 8 DI, 8 DO DAQ) http://www.adlinktech.com/PD/marketing/Datasheet/cPCI-9116+R/cPCI-9116+R_Datasheet_1.pdf
- ADLINK cPCI-6216v (16-ch 16-bit D/A, bipolar outputs, 4 DI, 4 DO) http://www.adlinktech.com/PD/marketing/Datasheet/cPCI-6208+6216Series/cPCI-6208+6216Series_Datasheet_en_1.pdf
- ADLINK cPCI-7230 (isolated 16 DI & 16 DO, 2 ext. interrupt sources)
 http://www.adlinktech.com/PD/marketing/Datasheet/cPCI-7230/cPCI-7230 Datasheet en 1.pdf
- Micro-Research cPCI-EVG-230 (event generator)
- Micro-Research cPCI-EVR-230 (event receiver)
- areaDetector module provides support for Allied Vision Technologies (formerly Prosilica). It interfaces their GigE and Firewire interfaces http://www.alliedvisiontec.com/emea/products/cameras/gigabit-ethernet/manta.html
- Siemens PLC (via TCP/IP using s7plc driver)

